Global solutions for 2D quadratic Schrödinger equations

Abstract We prove global existence and scattering for a class of quadratic Schrodinger equations in dimension 2 with small and localized data. The proof relies on the idea of space–time resonance.

[1]  N. Hayashi,et al.  Time decay of small solutions to quadratic nonlinear Schrödinger equations in 3D , 2003, Differential and Integral Equations.

[2]  Jean-Marc Delort Global solutions for small nonlinear long range perturbations of two dimensional Schrödinger equations , 2002 .

[3]  J. Ginibre,et al.  Long range scattering for non-linear Schrödinger and Hartree equations in space dimensionn≥2 , 1993 .

[4]  K. Nakanishi,et al.  Scattering for the Gross-Pitaevskii equation , 2005 .

[5]  Nader Masmoudi,et al.  Global Solutions for 3D Quadratic Schrödinger Equations , 2008, 1001.5158.

[6]  Jacqueline E. Barab,et al.  Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation , 1984 .

[7]  Nakao Hayashi,et al.  Global Existence of Small Solutions to the Quadratic Nonlinear Schrödinger Equations in Two Space Dimensions , 2001, SIAM J. Math. Anal..

[8]  Ronald R. Coifman,et al.  Au delà des opérateurs pseudo-différentiels , 1978 .

[9]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[10]  Walter A. Strauss,et al.  Nonlinear scattering theory at low energy , 1981 .

[11]  Changxing Miao,et al.  Global existence of small solutions to the generalized derivative nonlinear Schrödinger equation , 1999 .

[12]  Nakao Hayashi,et al.  On the quadratic nonlinear Schrödinger equation in three space dimensions , 2000 .

[13]  S. Cohn,et al.  Resonance and long time existence for the quadratic semilinear schrödinger equation , 1992 .

[14]  Blow-up of solutions of nonlinear wave equations in three space dimensions , 1979 .

[15]  K. Nakanishi,et al.  Global Dispersive Solutions for the Gross–Pitaevskii Equation in Two and Three Dimensions , 2006, math/0605655.

[16]  T. Cazenave,et al.  Rapidly decaying solutions of the nonlinear Schrödinger equation , 1992 .

[17]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[18]  A. Shimomura,et al.  Long-range scattering for nonlinear Schrödinger equations in one and two space dimensions , 2004, Differential and Integral Equations.

[19]  A. Shimomura,et al.  Nonexistence of scattering states for some quadratic nonlinear Schrödinger equations in two space dimensions , 2006, Differential and Integral Equations.

[20]  Tohru Ozawa,et al.  Long range scattering for nonlinear Schrödinger equations in one space dimension , 1991 .

[21]  A. Shimomura,et al.  MODIFIED WAVE OPERATORS FOR NONLINEAR SCHR¨ ODINGER EQUATIONS IN ONE AND TWO DIMENSIONS , 2004 .

[22]  Paraproducts with flag singularities I. A case study , 2006, math/0601474.

[23]  Nakao Hayashi,et al.  Almost global existence of small solutions to quadratic nonlinear Schrödinger equations in three space dimensions , 1995 .

[24]  J. Ginibre,et al.  On the existence of the wave operators for a class of nonlinear Schrödinger equations , 1994 .

[25]  Kenji Yajima,et al.  The asymptotic behavior of nonlinear Schrdinger equations , 1984 .

[26]  Yuichiro Kawahara Global existence and asymptotic behavior of small solutions to nonlinear Schrödinger equations in 3D , 2005, Differential and Integral Equations.

[27]  P. Germain,et al.  Global solutions for the gravity water waves equation in dimension 3 , 2009, 0906.5343.

[28]  Jack Schaeffer The equation utt − Δu = |u|p for the critical value of p , 1985, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[29]  S. Tonegawa,et al.  WAVE OPERATORS FOR THE NONLINEAR SCHRÖDINGER EQUATION WITH A NONLINEARITY OF LOW DEGREE IN ONE OR TWO SPACE DIMENSIONS , 2003 .

[30]  Nakao Hayashi,et al.  Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations , 1998 .

[31]  Kenji Nakanishi,et al.  Asymptotically-Free Solutions for the Short-Range Nonlinear Schrödinger Equation , 2001, SIAM J. Math. Anal..

[32]  A. Shimomura Nonexistence of asymptotically free solutions for quadratic nonlinear Schrödinger equations in two space dimensions , 2005, Differential and Integral Equations.

[33]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .