A Multisymplectic Framework for Classical Field Theory and the Calculus of Variations: I. Covariant Hamiltonian Formalism
暂无分享,去创建一个
[1] I. Kolář,et al. On the higher order Poincaré-Cartan forms , 1983 .
[2] W. B. Thompson,et al. Covariant Poisson Brackets for Classical Fields , 1986 .
[3] P. Rodrigues,et al. Field theory with higher derivatives-Hamiltonian structure , 1969 .
[4] The hamiltonian formalism in higher order variational problems , 1982 .
[5] S. Sternberg,et al. The Hamilton-Cartan formalism in the calculus of variations , 1973 .
[6] M. Francaviglia,et al. On the Legendre transformation for a class of nonregular higher‐order Lagrangian field theories , 1990 .
[7] B. Kupershmidt. Geometry of jet bundles and the structure of lagrangian and hamiltonian formalisms , 1980 .
[8] J. Kijowski. A finite-dimensional canonical formalism in the classical field theory , 1973 .
[9] Hermann Weyl,et al. Geodesic Fields in the Calculus of Variation for Multiple Integrals , 1935 .
[10] J. M. Masqué. Poincaré-Cartan Forms in Higher Order Variational Calculus on Fibred Manifolds , 1985 .
[11] H. Kastrup. Canonical theories of Lagrangian dynamical systems in physics , 1983 .
[12] M. Crampin,et al. On the Legendre map in higher-order field theories , 1990 .
[13] V. Aldaya,et al. Higher-order Hamiltonian formalism in field theory , 1980 .
[14] Y. Kosmann-Schwarzbach. Hamiltonian systems on fibered manifolds , 1981 .
[15] G. Martin. A Darboux theorem for multi-symplectic manifolds , 1988 .
[16] Ernst Binz,et al. Geometry of Classical Fields , 1989 .
[17] M. Crampin,et al. On the multisymplectic formalism for first order field theories , 1991 .
[18] Extension of the classical Cartan form , 1984 .
[19] A. Polyakov. Fine structure of strings , 1986 .
[20] Mark J. Gotay,et al. A multisymplectic framework for classical field theory and the calculus of variations II: space + time decomposition , 1991 .
[21] Phillip A. Griffiths,et al. Exterior Differential Systems and the Calculus of Variations , 1982 .
[22] W. Szczyrba. Lagrangian formalism in the classical field theory , 1976 .
[23] W. Shadwick. The Hamiltonian formulation of regular rth-order Lagrangian field theories , 1982 .
[24] W. Szczyrba. A symplectic structure on the set of Einstein metrics , 1976 .
[25] S. Sternberg. Some preliminary remarks on the formal variational calculus of gel'fand and dikii , 1978 .
[26] Arithmetic Hilbert Modular Functions II , 1985 .
[27] T. Szapiro. Geodesic fields in the calculus of variations of multiple integrals depending on derivatives of higher order , 1980 .
[28] Christian Günther,et al. The polysymplectic Hamiltonian formalism in field theory and calculus of variations. I: the local case , 1987 .
[29] Manuel de León,et al. Generalized classical mechanics and field theory , 1985 .
[30] J. Sniatycki. The cauchy data space formulation of classical field theory , 1984 .
[31] A contribution to the global formulation of the higher-order Poincaré-Cartan form , 1987 .
[32] D. Saunders. An alternative approach to the Cartan form in Lagrangian field theories , 1987 .
[33] Victor Szczyrba. Hamiltonian dynamics of higher‐order theories of gravity , 1987 .
[34] M. De Leon,et al. Formalisme hamiltonien symplectique sur les fibrés tangents d'ordre supérieur , 1985 .
[35] I. Kolář. A geometrical version of the higher order Hamilton formalism in fibred manifolds , 1984 .
[36] P. Dedecker. On the generalization of symplectic geometry to multiple integrals in the Calculus of Variations , 1977 .