A Multisymplectic Framework for Classical Field Theory and the Calculus of Variations: I. Covariant Hamiltonian Formalism

Several recent results on the Hamiltonian formalism in the calculus of variations are presented. In particular, I propose a new candidate for the covariant phase space and show that it carries a canonical multisymplectic structure. Corresponding covariant Legendre transformations are constructed; while not necessarily unique, the class of all such is completely characterized. A suitable notion of regularity is also defined. These results comprise the foundation of a truly Hamiltonian framework for the calculus of variations in general, and enable one to deal directly with higher order Lagrangians as well as multiple integrals in much the same way as one treats ordinary mechanics. The key ingredient in this work is a generalization of Kijowski and Szczyrba's notion of “multiphase space.”

[1]  I. Kolář,et al.  On the higher order Poincaré-Cartan forms , 1983 .

[2]  W. B. Thompson,et al.  Covariant Poisson Brackets for Classical Fields , 1986 .

[3]  P. Rodrigues,et al.  Field theory with higher derivatives-Hamiltonian structure , 1969 .

[4]  The hamiltonian formalism in higher order variational problems , 1982 .

[5]  S. Sternberg,et al.  The Hamilton-Cartan formalism in the calculus of variations , 1973 .

[6]  M. Francaviglia,et al.  On the Legendre transformation for a class of nonregular higher‐order Lagrangian field theories , 1990 .

[7]  B. Kupershmidt Geometry of jet bundles and the structure of lagrangian and hamiltonian formalisms , 1980 .

[8]  J. Kijowski A finite-dimensional canonical formalism in the classical field theory , 1973 .

[9]  Hermann Weyl,et al.  Geodesic Fields in the Calculus of Variation for Multiple Integrals , 1935 .

[10]  J. M. Masqué Poincaré-Cartan Forms in Higher Order Variational Calculus on Fibred Manifolds , 1985 .

[11]  H. Kastrup Canonical theories of Lagrangian dynamical systems in physics , 1983 .

[12]  M. Crampin,et al.  On the Legendre map in higher-order field theories , 1990 .

[13]  V. Aldaya,et al.  Higher-order Hamiltonian formalism in field theory , 1980 .

[14]  Y. Kosmann-Schwarzbach Hamiltonian systems on fibered manifolds , 1981 .

[15]  G. Martin A Darboux theorem for multi-symplectic manifolds , 1988 .

[16]  Ernst Binz,et al.  Geometry of Classical Fields , 1989 .

[17]  M. Crampin,et al.  On the multisymplectic formalism for first order field theories , 1991 .

[18]  Extension of the classical Cartan form , 1984 .

[19]  A. Polyakov Fine structure of strings , 1986 .

[20]  Mark J. Gotay,et al.  A multisymplectic framework for classical field theory and the calculus of variations II: space + time decomposition , 1991 .

[21]  Phillip A. Griffiths,et al.  Exterior Differential Systems and the Calculus of Variations , 1982 .

[22]  W. Szczyrba Lagrangian formalism in the classical field theory , 1976 .

[23]  W. Shadwick The Hamiltonian formulation of regular rth-order Lagrangian field theories , 1982 .

[24]  W. Szczyrba A symplectic structure on the set of Einstein metrics , 1976 .

[25]  S. Sternberg Some preliminary remarks on the formal variational calculus of gel'fand and dikii , 1978 .

[26]  Arithmetic Hilbert Modular Functions II , 1985 .

[27]  T. Szapiro Geodesic fields in the calculus of variations of multiple integrals depending on derivatives of higher order , 1980 .

[28]  Christian Günther,et al.  The polysymplectic Hamiltonian formalism in field theory and calculus of variations. I: the local case , 1987 .

[29]  Manuel de León,et al.  Generalized classical mechanics and field theory , 1985 .

[30]  J. Sniatycki The cauchy data space formulation of classical field theory , 1984 .

[31]  A contribution to the global formulation of the higher-order Poincaré-Cartan form , 1987 .

[32]  D. Saunders An alternative approach to the Cartan form in Lagrangian field theories , 1987 .

[33]  Victor Szczyrba Hamiltonian dynamics of higher‐order theories of gravity , 1987 .

[34]  M. De Leon,et al.  Formalisme hamiltonien symplectique sur les fibrés tangents d'ordre supérieur , 1985 .

[35]  I. Kolář A geometrical version of the higher order Hamilton formalism in fibred manifolds , 1984 .

[36]  P. Dedecker On the generalization of symplectic geometry to multiple integrals in the Calculus of Variations , 1977 .