Algebraic and Proof-Theoretic Foundations of the Logics for Social Behaviour

This thesis is part of a line of research aimed at providing a strong and modular mathematical backbone to a wide and inherently diverse class of logics, introduced to capture different facets of social behaviour. The contributions of this thesis are rooted methodologically in duality, algebraic logic and structural proof theory, pertain to and advance three theories (unified correspondence, multi-type calculi, and updates on algebras) aimed at improving the semantic and proof-theoretic environment of wide classes of logics, and apply these theories to the introduction of logical frameworks specifically designed to capture concrete aspects of social behaviour, such as agents’ coordination and planning concerning the transformation and use of resources, and agents’ decision-making under uncertainty. The results of this thesis include: the characterization of the axiomatic extensions of the basic DLE-logics which admit proper display calculi; an algorithm computing the analytic structural rules capturing these axiomatic extensions; the introduction of a multi-type environment to describe and reason about agents’ abilities and capabilities to use and transform resources; the introduction of a proper display calculus for firstorder logic; the introduction of the intuitionistic counterpart of Probabilistic Dynamic Epistemic Logic, specifically designed to address situations in which truth is socially constructed. The results and methodologies developed in this thesis pave the way to the logical modelling of the inner workings of organizations and their dynamics, and of social phenomena such as reputational Matthew effects and bank runs.

[1]  Willem J. Blok,et al.  On the finite embeddability property for residuated ordered groupoids , 2004 .

[2]  Rosalie Iemhoff,et al.  Proof theory for admissible rules , 2009, Ann. Pure Appl. Log..

[3]  Umberto Rivieccio,et al.  Epistemic Updates on Bilattices , 2015, LORI.

[4]  Gregory M. Provan,et al.  A logic-based analysis of Dempster-Shafer theory , 1990, Int. J. Approx. Reason..

[5]  Nuel D. Belnap,et al.  Seeing To it That: A Canonical Form for Agentives , 2008 .

[6]  H. Wansing Displaying Modal Logic , 1998 .

[7]  Erich Grädel,et al.  Dependence and Independence , 2012, Stud Logica.

[8]  Heinrich Wansing,et al.  Predicate Logics on Display , 1999, Stud Logica.

[9]  J. Barwise,et al.  Generalized quantifiers and natural language , 1981 .

[10]  Willem Conradie,et al.  Algebraic modal correspondence: Sahlqvist and beyond , 2016, J. Log. Algebraic Methods Program..

[11]  Kazushige Terui,et al.  The finite model property for various fragments of intuitionistic linear logic , 1999, Journal of Symbolic Logic.

[12]  Alexandru Baltag,et al.  Logical Models of Informational Cascades , 2013 .

[13]  Willem Conradie,et al.  Canonicity results for mu-calculi: an algorithmic approach , 2017, J. Log. Comput..

[14]  Umberto Rivieccio Bilattice Public Announcement Logic , 2014, Advances in Modal Logic.

[15]  Jan van Eijck,et al.  Logics of communication and change , 2006, Inf. Comput..

[16]  Cecelia Britz Correspondence theory in many-valued modal logic , 2016 .

[17]  Guram Bezhanishvili,et al.  Varieties of Monadic Heyting Algebras Part II: Duality Theory , 1999, Stud Logica.

[18]  Alessandra Palmigiano,et al.  Multi-type Sequent Calculi , 2016 .

[19]  Brian F. Chellas On bringing it about , 1995, J. Philos. Log..

[20]  Joseph T. Mahoney,et al.  The management of resources and the resource of management , 1995 .

[21]  Krister Segerberg,et al.  The logic of deliberate action , 1982, J. Philos. Log..

[22]  Zuzana Haniková,et al.  The finite embeddability property for residuated groupoids , 2014 .

[23]  B. Davey,et al.  Introduction to Lattices and Order: Appendix B: further reading , 2002 .

[24]  Alessandra Palmigiano,et al.  Dynamic Epistemic Logic Displayed , 2013, LORI.

[25]  Jouko A. Väänänen,et al.  Dependence Logic - A New Approach to Independence Friendly Logic , 2007, London Mathematical Society student texts.

[26]  E. Vol Quantum Theory as a Relevant Framework for the Statement of Probabilistic and Many-Valued Logic , 2012, 1205.6898.

[27]  H. M. Macneille,et al.  Partially ordered sets , 1937 .

[28]  R. Gibbons,et al.  The Handbook of Organizational Economics , 2012 .

[29]  Silvio Ghilardi,et al.  Unification in intuitionistic logic , 1999, Journal of Symbolic Logic.

[30]  Willem Conradie,et al.  On Sahlqvist theory for hybrid logics , 2015, J. Log. Comput..

[31]  Alessandra Palmigiano,et al.  Dual characterizations for finite lattices via correspondence theory for monotone modal logic , 2014, J. Log. Comput..

[32]  Jon Williamson,et al.  Objective Bayesian probabilistic logic , 2008, J. Algorithms.

[33]  Willem Conradie,et al.  Algorithmic correspondence and canonicity for distributive modal logic , 2012, Ann. Pure Appl. Log..

[34]  Alessandra Palmigiano,et al.  Unified Correspondence as a Proof-Theoretic Tool , 2016, J. Log. Comput..

[35]  Umberto Rivieccio,et al.  Łukasiewicz Public Announcement Logic , 2016, IPMU.

[36]  W. Scott Organization Theory: An Overview and an Appraisal , 1961 .

[37]  Marek W. Zawadowski,et al.  Theories of analytic monads , 2012, Mathematical Structures in Computer Science.

[38]  P R Halmos,et al.  POLYADIC BOOLEAN ALGEBRAS. , 1954, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Gai CarSO A Logic for Reasoning about Probabilities * , 2004 .

[40]  Alessandra Palmigiano,et al.  Multi-type display calculus for dynamic epistemic logic , 2016, J. Log. Comput..

[41]  Bruce E. Kaufman The RBV theory foundation of strategic HRM: critical flaws, problems for research and practice, and an alternative economics paradigm , 2015 .

[42]  Peter W. O'Hearn,et al.  Possible worlds and resources: the semantics of BI , 2004, Theor. Comput. Sci..

[43]  Johan van Benthem Logical Dynamics of Information and Interaction: Preface , 2011 .

[44]  Juha Kontinen,et al.  Axiomatizing first order consequences in dependence logic , 2012, Ann. Pure Appl. Log..

[45]  R. Goldblatt Topoi, the Categorial Analysis of Logic , 1979 .

[46]  Gisèle Fischer Servi,et al.  The finite model property for MIPQ and some consequences , 1978, Notre Dame J. Formal Log..

[47]  Lawrence S. Moss,et al.  The Logic of Public Announcements and Common Knowledge and Private Suspicions , 1998, TARK.

[48]  Jerzy Tiuryn,et al.  Dynamic logic , 2001, SIGA.

[49]  Frank Dignum,et al.  A logic of agent organizations , 2012, Log. J. IGPL.

[50]  Tommaso Flaminio,et al.  States of finite GBL-algebras with monoidal sum , 2017, Fuzzy Sets Syst..

[51]  Barteld P. Kooi,et al.  Probabilistic Dynamic Epistemic Logic , 2003, J. Log. Lang. Inf..

[52]  Heinrich Wansing,et al.  Hypersequent and Display Calculi – a Unified Perspective , 2014, Studia Logica.

[53]  Craig Boutilier,et al.  Toward a Logic for Qualitative Decision Theory , 1994, KR.

[54]  Perlindström First Order Predicate Logic with Generalized Quantifiers , 1966 .

[55]  Hiroakira Ono,et al.  Logics without the contraction rule , 1985, Journal of Symbolic Logic.

[56]  Andrew M. Pitts,et al.  Nominal Sets: Names and Symmetry in Computer Science , 2013 .

[57]  N. Belnap Backwards and Forwards in the Modal Logic of Agency , 1991 .

[58]  Alexey P. Kopylov Decidability of linear affine logic , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[59]  Alessandra Palmigiano,et al.  A proof-theoretic semantic analysis of dynamic epistemic logic , 2016, J. Log. Comput..

[60]  Sabine Frittella,et al.  Algebraic semantics of refinement modal logic , 2016, Advances in Modal Logic.

[61]  Alessandra Palmigiano,et al.  Sahlqvist theory for impossible worlds , 2016, J. Log. Comput..

[62]  B. Wernerfelt,et al.  A Resource-Based View of the Firm , 1984 .

[63]  Jaakko Hintikka,et al.  Quantifiers vs. Quantification Theory , 1973 .

[64]  Alessandra Palmigiano,et al.  Algebraic semantics and model completeness for Intuitionistic Public Announcement Logic , 2011, Ann. Pure Appl. Log..

[65]  Ronald Fagin,et al.  Two Views of Belief: Belief as Generalized Probability and Belief as Evidence , 1992, Artif. Intell..

[66]  Amílcar Sernadas,et al.  Reasoning About Quantum Systems , 2004, JELIA.

[67]  Jean-Yves Girard,et al.  Linear logic: its syntax and semantics , 1995 .

[68]  Alessandra Palmigiano,et al.  Lattice Logic Properly Displayed , 2017, WoLLIC.

[69]  Willem Conradie,et al.  Constructive Canonicity for Lattice-Based Fixed Point Logics , 2016, WoLLIC.

[70]  Yanjing Wang,et al.  On axiomatizations of public announcement logic , 2013, Synthese.

[71]  Alessandra Palmigiano,et al.  Multi-type display calculus for propositional dynamic logic , 2016, J. Log. Comput..

[72]  Mark A. Brown On the logic of ability , 1988, J. Philos. Log..

[73]  David J. Pym,et al.  A Calculus and logic of resources and processes , 2006, Formal Aspects of Computing.

[74]  Revantha Ramanayake,et al.  Power and Limits of Structural Display Rules , 2016, ACM Trans. Comput. Log..

[75]  Richard Montague Logical necessity, physical necessity, ethics, and quantifiers , 1960 .

[76]  J. Barney Firm Resources and Sustained Competitive Advantage , 1991 .

[77]  J. Barney,et al.  IS THE RESOURCE-BASED " VIEW " A USEFUL PERSPECTIVE FOR STRATEGIC MANAGEMENT RESEARCH ? , 2001 .

[78]  Kazushige Terui,et al.  Algebraic proof theory for substructural logics: Cut-elimination and completions , 2012, Ann. Pure Appl. Log..

[79]  Joshua Sack,et al.  The probabilistic logic of communication and change , 2019, J. Log. Comput..

[80]  Alexandru Baltag,et al.  Probabilistic dynamic belief revision , 2008, Synthese.

[81]  Jan van Eijck,et al.  Epistemic Probability Logic Simplified , 2014, Advances in Modal Logic.

[82]  José Meseguer,et al.  From Petri Nets to Linear Logic , 1989, Category Theory and Computer Science.

[83]  Johan van Benthem,et al.  Decidability and Nite Model Property of Substructural Logics , 1998 .

[84]  Kazushige Terui,et al.  Expanding the Realm of Systematic Proof Theory , 2009, CSL.

[85]  Johan van Benthem,et al.  Dynamic Update with Probabilities , 2009, Stud Logica.

[86]  D. Clarke The logical form of imperatives , 1975 .

[87]  Fan Yang,et al.  A Multi-type Calculus for Inquisitive Logic , 2016, WoLLIC.

[88]  Steven T. Kuhn Quantifiers as modal operators , 1980 .

[89]  Brunella Gerla,et al.  De Finetti’s No-Dutch-Book Criterion for Gödel logic , 2008, Stud Logica.

[90]  Nachoem Wijnberg,et al.  From Resources to Value and Back: Competition between and within Organizations , 2010 .

[91]  M. V. Dignum,et al.  A Model for Organizational Interaction: based on Agents, founded in Logic , 2000 .

[92]  Johan van Benthem,et al.  Modal Foundations for Predicate Logic , 1997, Log. J. IGPL.

[93]  John-Jules Ch. Meyer,et al.  A Logic of Capabilities , 1994, LFCS.

[94]  Haridimos Tsoukas,et al.  The Oxford handbook of organization theory , 2005 .

[95]  Ronald Fagin,et al.  Reasoning about knowledge and probability , 1988, JACM.

[96]  Guram Bezhanishvili,et al.  Varieties of Monadic Heyting Algebras. Part I , 1998, Stud Logica.

[97]  Sali Li,et al.  Toward Reimagining Strategy Research: Retrospection and Prospection on the 2011 AMR Decade Award Article , 2013 .

[98]  Alessandra Palmigiano,et al.  Epistemic Updates on Algebras , 2013, Log. Methods Comput. Sci..

[99]  Dag Westerstaåhl,et al.  Quantifiers in Formal and Natural Languages , 1989 .

[100]  Alessandra Palmigiano,et al.  Jónsson-style canonicity for ALBA-inequalities , 2017, J. Log. Comput..

[101]  Minghui Ma,et al.  Unified correspondence and proof theory for strict implication , 2016, J. Log. Comput..

[102]  H. D. Swart,et al.  Adverbs of quantification , 1991 .

[103]  Jamal Shamsie,et al.  Looking Inside the Dream Team: Probing Into the Contributions of Tacit Knowledge as an Organizational Resource , 2013, Organ. Sci..

[104]  Dag Elgesem,et al.  The modal logic of agency , 1997 .

[105]  Willem Conradie,et al.  Unified Correspondence , 2014, Johan van Benthem on Logic and Information Dynamics.

[106]  Willem Conradie,et al.  Probabilistic Epistemic Updates on Algebras , 2015, LORI.

[107]  Charles B. Cross,et al.  ‘Can’ and the logic of ability , 1986 .

[108]  Willem Conradie,et al.  Toward an Epistemic-Logical Theory of Categorization , 2017, TARK.

[109]  Willem Conradie,et al.  Categories: How I Learned to Stop Worrying and Love Two Sorts , 2016, WoLLIC.

[110]  Mai Gehrke,et al.  Bounded distributive lattice expansions , 2004 .

[111]  Willem Conradie,et al.  Algorithmic correspondence for intuitionistic modal mu-calculus , 2015, Theor. Comput. Sci..