Dissipative quasi-geostrophic equations in critical Sobolev spaces: smoothing effect and global well-posedness

We study the critical and super-critical dissipative quasi-geostrophic equations in $\bR^2$ or $\bT^2$. Higher regularity of mild solutions with arbitrary initial data in $H^{2-\gamma}$ is proved. As a corollary, we obtain a global existence result for the critical 2D quasi-geostrophic equations with periodic $\dot H^1$ data. Some decay in time estimates are also provided.

[1]  Hongjie Dong,et al.  Spatial Analyticity of the Solutions to the Subcritical Dissipative Quasi-geostrophic Equations , 2008 .

[2]  P. Constantin,et al.  Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation , 2007, math/0701592.

[3]  Hongjie Dong,et al.  Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space , 2007, math/0701828.

[4]  A. Volberg,et al.  Global well-posedness for the critical 2D dissipative quasi-geostrophic equation , 2006, math/0604185.

[5]  N. Ju Dissipative 2D quasi-geostrophic equation: local well-posednes, global regularity and similarity solutions , 2007 .

[6]  Xinwei Yu Remarks on the Global Regularity for the Super-Critical 2D Dissipative Quasi-Geostrophic Equation , 2006, math/0611283.

[7]  Pierre Germain,et al.  Regularity of Solutions to the Navier-Stokes Equations Evolving from Small Data in BMO−1 , 2006, math/0609781.

[8]  L. Caffarelli,et al.  Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation , 2006, math/0608447.

[9]  Hideyuki Miura,et al.  Dissipative Quasi-Geostrophic Equation for Large Initial Data in the Critical Sobolev Space , 2006 .

[10]  Hideyuki Miura,et al.  On the regularizing rate estimates of Koch-Tataru's solution to the Navier-Stokes equations , 2006, Asymptot. Anal..

[11]  Jiahong Wu,et al.  Solutions of the 2D quasi-geostrophic equation in Hölder spaces , 2005 .

[12]  Hongjie Dong,et al.  On the Local Smoothness of Solutions of the Navier–Stokes Equations , 2005, math/0502104.

[13]  Jiahong Wu,et al.  The two-dimensional quasi-geostrophic equation with critical or supercritical dissipation , 2005 .

[14]  N. Ju On the two dimensional quasi-geostrophic equations , 2005 .

[15]  Antonio Córdoba,et al.  Communications in Mathematical Physics A Maximum Principle Applied to Quasi-Geostrophic Equations , 2004 .

[16]  N. Ju Existence and Uniqueness of the Solution to the Dissipative 2D Quasi-Geostrophic Equations in the Sobolev Space , 2004 .

[17]  R. Danchin Density-dependent incompressible viscous fluids in critical spaces , 2003, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[18]  O. Sawada On analyticity rate estimates of the solutions to the Navier-Stokes equations in Bessel-potential spaces , 2003 .

[19]  Jiahong Wu,et al.  Dissipative quasi-geostrophic equations with L p data , 2001 .

[20]  Peter Constantin,et al.  Behavior of solutions of 2D quasi-geostrophic equations , 1999 .

[21]  Jean-Yves Chemin,et al.  Perfect Incompressible Fluids , 1998 .

[22]  Winfried Sickel,et al.  Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.

[23]  Hiroshi Fujita,et al.  On the Navier-Stokes initial value problem. I , 1964 .