Enhanced Visualization of Detected 3D Geometric Differences

The wide availability of 3D acquisition devices makes viable their use for shape monitoring. The current techniques for the analysis of time‐varying data can efficiently detect actual significant geometric changes and rule out differences due to irrelevant variations (such as sampling, lighting and coverage). On the other hand, the effective visualization of such detected changes can be challenging when we want to show at the same time the original appearance of the 3D model. In this paper, we propose a dynamic technique for the effective visualization of detected differences between two 3D scenes. The presented approach, while retaining the original appearance, allows the user to switch between the two models in a way that enhances the geometric differences that have been detected as significant. Additionally, the same technique is able to visually hides the other negligible, yet visible, variations. The main idea is to use two distinct screen space time‐based interpolation functions for the significant 3D differences and for the small variations to hide. We have validated the proposed approach in a user study on a different class of datasets, proving the objective and subjective effectiveness of the method.

[1]  Penny Rheingans,et al.  Illustration-inspired techniques for visualizing time-varying data , 2005, VIS 05. IEEE Visualization, 2005..

[2]  Daniel J. Simons,et al.  Current Approaches to Change Blindness , 2000 .

[3]  Penny Rheingans,et al.  An Evaluation of Visualization Techniques to Illustrate Statistical Deformation Models , 2011, Comput. Graph. Forum.

[4]  Tamy Boubekeur,et al.  Detection of Geometric Temporal Changes in Point Clouds , 2016, Comput. Graph. Forum.

[5]  Paolo Cignoni,et al.  Batched multi triangulation , 2005, VIS 05. IEEE Visualization, 2005..

[6]  Shi-Min Hu,et al.  Change Blindness Images , 2013, IEEE Transactions on Visualization and Computer Graphics.

[7]  Brian Wyvill,et al.  Robust iso-surface tracking for interactive character skinning , 2014, ACM Trans. Graph..

[8]  Eduard Gröller,et al.  Comparative Visualization for Parameter Studies of Dataset Series , 2010, IEEE Transactions on Visualization and Computer Graphics.

[9]  Hans-Georg Pagendarm,et al.  Comparative Visualization - Approaches and Examples , 1994 .

[10]  Joseph L. Mundy,et al.  Change Detection in a 3-d World , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Lucy T. Nowell,et al.  Change blindness in information visualization: a case study , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[12]  Cláudio T. Silva,et al.  VisTrails: enabling interactive multiple-view visualizations , 2005, VIS 05. IEEE Visualization, 2005..

[13]  Chaoli Wang,et al.  High dimensional direct rendering of time-varying volumetric data , 2003, IEEE Visualization, 2003. VIS 2003..

[14]  Robert van Liere,et al.  Visualization of time dependent confocal microscopy data , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[15]  Michael S. Ambinder,et al.  Change blindness , 1997, Trends in Cognitive Sciences.

[16]  Penny Rheingans,et al.  Texture-based feature tracking for effective time-varying data visualization , 2007, IEEE Transactions on Visualization and Computer Graphics.

[17]  Daniel Cohen-Or,et al.  Analyzing growing plants from 4D point cloud data , 2013, ACM Trans. Graph..

[18]  William Ribarsky,et al.  Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data , 2009, IEEE Transactions on Visualization and Computer Graphics.

[19]  Charl P. Botha,et al.  Articulated Planar Reformation for Change Visualization in Small Animal Imaging , 2010, IEEE Transactions on Visualization and Computer Graphics.

[20]  Jonathan C. Roberts,et al.  Visual comparison for information visualization , 2011, Inf. Vis..

[21]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[22]  Hui Huang,et al.  Proactive 3D scanning of inaccessible parts , 2014, ACM Trans. Graph..

[23]  Reinhard Klein,et al.  Accurate Interactive Visualization of Large Deformations and Variability in Biomedical Image Ensembles , 2016, IEEE Transactions on Visualization and Computer Graphics.

[24]  Marc Pollefeys,et al.  City-Scale Change Detection in Cadastral 3D Models Using Images , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Christophe Schlick,et al.  Fast Alternatives to Perlin's Bias and Gain Functions , 1994, Graphics Gems.

[26]  Kikuo Fujimura,et al.  Visualization of plant growth , 1997 .

[27]  Wolfgang Heidrich,et al.  HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions , 2011, ACM Trans. Graph..

[28]  Pascal Barla,et al.  Growing Least Squares for the Analysis of Manifolds in Scale‐Space , 2012, Comput. Graph. Forum.

[29]  P. Rheingans,et al.  SimilarityExplorer : A Visual Inter-Comparison Tool for Multifaceted Climate Data , 2013 .

[30]  Melanie Tory,et al.  4D space-time techniques: a medical imaging case study , 2001, Proceedings Visualization, 2001. VIS '01..

[31]  Frédo Durand,et al.  Eulerian video magnification for revealing subtle changes in the world , 2012, ACM Trans. Graph..

[32]  Kikuo Fujimura,et al.  Visualization of plant growth , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[33]  R. van Liere,et al.  Visualization of time dependent confocal microscopy data , 2000 .

[34]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[35]  Frédo Durand,et al.  Video diff , 2015, ACM Trans. Graph..

[36]  Kwan-Liu Ma,et al.  Importance-Driven Time-Varying Data Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[37]  D. Simons,et al.  Change Blindness in the Absence of a Visual Disruption , 2000, Perception.