Stochastic watershed models for hydrologic risk management

Over half a century ago, the Harvard Water Program introduced the field of operational or synthetic hydrology providing stochastic streamflow models (SSMs), which could generate ensembles of synthetic streamflow traces useful for hydrologic risk management. The application of SSMs, based on streamflow observations alone, revolutionized water resources planning activities, yet has fallen out of favor due, in part, to their inability to account for the now nearly ubiquitous anthropogenic influences on streamflow. This commentary advances the modern equivalent of SSMs, termed ‘stochastic watershed models’ (SWMs) useful as input to nearly all modern risk based water resource decision making approaches. SWMs are deterministic watershed models implemented using stochastic meteorological series, model parameters and model errors, to generate ensembles of streamflow traces that represent the variability in possible future streamflows. SWMs combine deterministic watershed models, which are ideally suited to accounting for anthropogenic influences, with recent developments in uncertainty analysis and principles of stochastic simulation.

[1]  J. Vrugt,et al.  A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non‐Gaussian errors , 2010 .

[2]  J. Stedinger,et al.  Water resource systems planning and analysis , 1981 .

[3]  Demetris Koutsoyiannis,et al.  On the credibility of climate predictions , 2008 .

[4]  James D. Brown,et al.  Prospects for the open treatment of uncertainty in environmental research , 2010 .

[5]  Adam Bowditch Stochastic Analysis , 2013 .

[6]  V. Klemeš,et al.  Operational Testing of Hydrological Simulation Models , 2022 .

[7]  Bernard Bobée,et al.  Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: a review , 2006 .

[8]  J. Salas,et al.  Modeling the Dynamics of Long-Term Variability of Hydroclimatic Processes , 2003 .

[9]  Chong-yu Xu,et al.  Modelling hydrological consequences of climate change—Progress and challenges , 2005 .

[10]  Jim W Hall,et al.  Using probabilistic climate change information from a multimodel ensemble for water resources assessment , 2009 .

[11]  D. Tarboton The Source Hydrology of Severe Sustained Drought in the Southwestern United States , 1994 .

[12]  Jery R. Stedinger,et al.  Condensed disaggregation procedures and conservation corrections for stochastic hydrology , 1988 .

[13]  Paul Dunne,et al.  Bootstrap Position Analysis for Forecasting Low Flow Frequency , 1997 .

[14]  Robert L. Wilby,et al.  Evaluating climate model outputs for hydrological applications , 2010 .

[15]  Hoshin Vijai Gupta,et al.  A multi-criteria penalty function approach for evaluating a priori model parameter estimates , 2015 .

[16]  David R. Maidment,et al.  Conceptual Framework for the National Flood Interoperability Experiment , 2017 .

[17]  Jose D. Salas,et al.  Discussion 1 ‐“Pragmatic Approaches for Water Management Under Climate Change Uncertainty” by Eugene Z. Stakhiv 2 , 2013 .

[18]  R. Valencia,et al.  Disaggregation processes in stochastic hydrology , 1973 .

[19]  Jim W. Hall,et al.  Towards risk‐based water resources planning in England and Wales under a changing climate , 2012 .

[20]  D. Wolock,et al.  Hydrological effects of changes in levels of atmospheric carbon dioxide , 1991 .

[21]  David G. Groves,et al.  A General, Analytic Method for Generating Robust Strategies and Narrative Scenarios , 2006, Manag. Sci..

[22]  Richard M. Vogel,et al.  Reliability Indices for Water Supply Systems , 1987 .

[23]  Gerald N. Day,et al.  Extended Streamflow Forecasting Using NWSRFS , 1985 .

[24]  Demetris Koutsoyiannis,et al.  A multivariate stochastic model for the generation of synthetic time series at multiple time scales reproducing long-term persistence , 2014, Environ. Model. Softw..

[25]  G. Hornberger,et al.  Identification of photosynthesis-light models for aquatic systems I. Theory and simulations , 1984 .

[26]  Demetris Koutsoyiannis,et al.  A blueprint for process‐based modeling of uncertain hydrological systems , 2012 .

[27]  Robert M. Hirsch,et al.  Risk analyses for a water-supply system; Occoquan Reservoir, Fairfax and Prince William Counties, Virginia , 1978 .

[28]  Jery R. Stedinger,et al.  Reservoir optimization using sampling SDP with ensemble streamflow prediction (ESP) forecasts , 2001 .

[29]  Richard M. Vogel,et al.  Nonstationarity: Flood Magnification and Recurrence Reduction Factors in the United States 1 , 2011 .

[30]  George Kuczera,et al.  There are no hydrological monsters, just models and observations with large uncertainties! , 2010 .

[31]  J. Glinsky,et al.  The general. , 1982, Nursing.

[32]  J. Stedinger,et al.  Appraisal of the generalized likelihood uncertainty estimation (GLUE) method , 2008 .

[33]  G. Senay,et al.  Analysis of long-term trends (1950–2009) in precipitation, runoff and runoff coefficient in major urban watersheds in the United States , 2013 .

[34]  D. Tarboton,et al.  An examination of the sensitivity of the Great Salt Lake to changes in inputs , 2012 .

[35]  Jery R. Stedinger,et al.  Synthetic streamflow generation: 1. Model verification and validation , 1982 .

[36]  Robert Dorfman,et al.  Design of Water-Resource Systems , 2014 .

[37]  Jose D. Salas,et al.  Stochastic Streamflow Simulation Using SAMS-2003 , 2006 .

[38]  Upmanu Lall,et al.  Simulation of daily rainfall scenarios with interannual and multidecadal climate cycles for South Florida , 2009 .

[39]  Andrew Binley,et al.  GLUE: 20 years on , 2014 .

[40]  Demetris Koutsoyiannis,et al.  HESS Opinions: "Climate, hydrology, energy, water: recognizing uncertainty and seeking sustainability" , 2008 .

[41]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[42]  J. Salas,et al.  Techniques for assessing water infrastructure for nonstationary extreme events: a review , 2018 .

[43]  J. Schaake,et al.  Precipitation and temperature ensemble forecasts from single-value forecasts , 2007 .

[44]  Climate driver informed short‐term drought risk evaluation , 2013 .

[45]  Richard M. Vogel,et al.  On the deterministic and stochastic use of hydrologic models , 2016 .

[46]  Demetris Koutsoyiannis,et al.  Estimating the Uncertainty of Hydrological Predictions through Data-Driven Resampling Techniques , 2015 .

[47]  Yvonne Schuhmacher,et al.  Risk Analysis And Uncertainty In Flood Damage Reduction Studies , 2016 .

[48]  Guillermo J. Vicens,et al.  Bayesian generation of synthetic streamflows , 1975 .

[49]  M. Hantush,et al.  Stochastic Residual-Error Analysis for Estimating Hydrologic Model Predictive Uncertainty , 2008 .

[50]  P. Mantovan,et al.  Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology , 2006 .

[51]  V. Singh,et al.  Review of dependence modeling in hydrology and water resources , 2016 .

[52]  E. Stakhiv,et al.  Are climate models “ready for prime time” in water resources management applications, or is more research needed? , 2010 .

[53]  George M. Hornberger,et al.  Identification of photosynthesis-light models for aquatic systems II. Application to a macrophyte dominated stream , 1984 .

[54]  Robert M. Hirsch Stochastic Hydrologic Model for Drought Management , 1981 .

[55]  George M. Hornberger,et al.  Sustainable water resource management under hydrological uncertainty , 2008 .

[56]  F. Pappenberger,et al.  Ignorance is bliss: Or seven reasons not to use uncertainty analysis , 2006 .

[57]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[58]  K. Beven Rainfall-Runoff Modelling: The Primer , 2012 .

[59]  Demetris Koutsoyiannis,et al.  A comparison of local and aggregated climate model outputs with observed data , 2010 .

[60]  K. Beven,et al.  A limits of acceptability approach to model evaluation and uncertainty estimation in flood frequency estimation by continuous simulation: Skalka catchment, Czech Republic , 2009 .

[61]  I. Rodríguez‐Iturbe,et al.  Random Functions and Hydrology , 1984 .

[62]  David G. Tarboton HYDROLOGIC SCENARIOS FOR SEVERE SUSTAINED DROUGHT IN THE SOUTHWESTERN UNITED STATES , 1995 .

[63]  Jery R. Stedinger,et al.  Climate Variability and Flood-Risk Management , 2001 .

[64]  Upmanu Lall,et al.  A nonparametric stochastic approach for multisite disaggregation of annual to daily streamflow , 2010 .

[65]  V. Novotný Watershed Models , 2019, Encyclopedia of Ecology.

[66]  J. Sheffield,et al.  Changes in the low flow regime over the eastern United States (1962–2011): variability, trends, and attributions , 2016, Climatic Change.

[67]  A. Montanari Large sample behaviors of GLUE in assessing theuncertainty of rainfall-runoff simulations , 2005 .

[68]  Casey Brown,et al.  Expanded Decision-Scaling Framework to Select Robust Long-Term Water-System Plans under Hydroclimatic Uncertainties , 2015 .

[69]  Eugene Z. Stakhiv,et al.  Pragmatic Approaches for Water Management Under Climate Change Uncertainty 1 , 2011 .

[70]  J. ...,et al.  Applied modeling of hydrologic time series , 1980 .

[71]  Demetris Koutsoyiannis The Hurst phenomenon and fractional Gaussian noise made easy , 2002 .

[72]  D. Wilks,et al.  The weather generation game: a review of stochastic weather models , 1999 .

[73]  Upmanu Lall,et al.  Stochastic simulation model for nonstationary time series using an autoregressive wavelet decomposition: Applications to rainfall and temperature , 2007 .

[74]  N. Matalas Mathematical assessment of synthetic hydrology , 1967 .

[75]  C. Gouriéroux,et al.  Value at Risk , 2010 .

[76]  Alan Harrison,et al.  Assessing reservoir operations risk under climate change , 2009 .

[77]  Daniel S. Wilks,et al.  Use of stochastic weathergenerators for precipitation downscaling , 2010 .

[78]  M. Clark,et al.  The Schaake Shuffle: A Method for Reconstructing Space–Time Variability in Forecasted Precipitation and Temperature Fields , 2004 .

[79]  George Kuczera,et al.  Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors , 2010 .

[80]  A. Foley Uncertainty in regional climate modelling: A review , 2010 .

[81]  Balaji Rajagopalan,et al.  Wavelet‐based time series bootstrap model for multidecadal streamflow simulation using climate indicators , 2016 .

[82]  Jery R. Stedinger,et al.  Synthetic streamflow generation: 2. Effect of parameter uncertainty , 1982 .

[83]  Daniel P. Loucks,et al.  Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation , 1982 .

[84]  Robert M. Hirsch,et al.  Risk analyses for a water supply system: Occoquan Reservoir, Fairfax and Prince William Counties, Virginia, USA / Des analyses aléatoires d'un système d'approvisionnement en eau: Occoquan Reservoir, Fairfax et Prince William Counties, Virginia, USA , 1978 .

[85]  V. Singh,et al.  Computer Models of Watershed Hydrology , 1995 .

[86]  Hoshin Vijai Gupta,et al.  Rainfall-runoff modelling in gauged and ungauged catchments , 2004 .

[87]  R. Katz,et al.  Coupled stochastic weather generation using spatial and generalized linear models , 2015, Stochastic Environmental Research and Risk Assessment.

[88]  Demetris Koutsoyiannis,et al.  The scientific legacy of Harold Edwin Hurst (1880–1978) , 2016 .

[89]  Aris P. Georgakakos,et al.  Assessment of Folsom Lake Response to Historical and Potential Future Climate Scenarios , 2000 .

[90]  Taha B. M. J. Ouarda,et al.  Stochastic simulation of nonstationary oscillation hydroclimatic processes using empirical mode decomposition , 2012 .

[91]  Kathleen D. White,et al.  Climate Change and Water Resources Management: A Federal Perspective , 2009 .

[92]  A. Kalra,et al.  Evaluating the effect of persistence on long-term trends and analyzing step changes in streamflows of the continental United States , 2014 .

[93]  Richard P. Hooper,et al.  Hydrology: The interdisciplinary science of water , 2015 .

[94]  Jery R. Stedinger,et al.  A condensed disaggregation model for incorporating parameter uncertainty into monthly reservoir simulations , 1985 .

[95]  E. Chang,et al.  Time Series Modelling , 2021 .

[96]  Steven J. Burian,et al.  Bayesian Approach for Uncertainty Analysis of an Urban Storm Water Model and Its Application to a Heavily Urbanized Watershed , 2013 .

[97]  W. L. Lane,et al.  Applied Modeling of Hydrologic Time Series , 1997 .

[98]  K. Hipel,et al.  Time series modelling of water resources and environmental systems , 1994 .

[99]  Michael D. Dettinger,et al.  On Critiques of “Stationarity is Dead: Whither Water Management?” , 2015 .

[100]  Casey Brown,et al.  The integrated effects of climate and hydrologic uncertainty on future flood risk assessments , 2015 .

[101]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.