Robust object tracking with background-weighted local kernels

Object tracking is critical to visual surveillance, activity analysis and event/gesture recognition. The major issues to be addressed in visual tracking are illumination changes, occlusion, appearance and scale variations. In this paper, we propose a weighted fragment based approach that tackles partial occlusion. The weights are derived from the difference between the fragment and background colors. Further, a fast and yet stable model updation method is described. We also demonstrate how edge information can be merged into the mean shift framework without having to use a joint histogram. This is used for tracking objects of varying sizes. Ideas presented here are computationally simple enough to be executed in real-time and can be directly extended to a multiple object tracking system.

[1]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Robert T. Collins,et al.  Mean-shift blob tracking through scale space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[3]  Larry S. Davis,et al.  Efficient mean-shift tracking via a new similarity measure , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[4]  Takeo Kanade,et al.  Algorithms for cooperative multisensor surveillance , 2001, Proc. IEEE.

[5]  Mongi A. Abidi,et al.  Optical flow-based real-time object tracking using non-prior training active feature model , 2005, Real Time Imaging.

[6]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[7]  Takeo Kanade,et al.  A System for Video Surveillance and Monitoring , 2000 .

[8]  Patrick Pérez,et al.  Robust tracking with motion estimation and local Kernel-based color modeling , 2007, Image Vis. Comput..

[9]  Luc Van Gool,et al.  An adaptive color-based particle filter , 2003, Image Vis. Comput..

[10]  Patrick Pérez,et al.  An adaptive mixture color model for robust visual tracking , 2006, 2006 International Conference on Image Processing.

[11]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[12]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[13]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[14]  Pradeep K. Atrey,et al.  Coopetitive visual surveillance using model predictive control , 2005, VSSN@MM.

[15]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Zhiwei Zhu,et al.  Combining Kalman filtering and mean shift for real time eye tracking under active IR illumination , 2002, Object recognition supported by user interaction for service robots.

[17]  Stanley T. Birchfield,et al.  Spatiograms versus histograms for region-based tracking , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[18]  Wayne H. Wolf,et al.  Multiple object tracking and occlusion handling by information exchange between uncalibrated cameras , 2005, IEEE International Conference on Image Processing 2005.

[19]  Emilio Maggio,et al.  Multi-part target representation for color tracking , 2005, IEEE International Conference on Image Processing 2005.

[20]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[21]  Gary Bradski,et al.  Computer Vision Face Tracking For Use in a Perceptual User Interface , 1998 .

[22]  R. Venkatesh Babu,et al.  Robust Object Tracking using Local Kernels and Background Information , 2007, 2007 IEEE International Conference on Image Processing.

[23]  A. Murat Tekalp,et al.  Temporal video segmentation using unsupervised clustering and semantic object tracking , 1998, J. Electronic Imaging.

[24]  Emilio Maggio,et al.  Hybrid particle filter and mean shift tracker with adaptive transition model , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[25]  Xin Li,et al.  Contour-based object tracking with occlusion handling in video acquired using mobile cameras , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Gregory Hager,et al.  Multiple kernel tracking with SSD , 2004, CVPR 2004.

[27]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..