Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios

[1]  James W. Jones,et al.  Global climate change and US agriculture , 1990, Nature.

[2]  J. Patz,et al.  Global climate change and emerging infectious diseases. , 1996, JAMA.

[3]  H. Czosnek,et al.  A worldwide survey of tomato yellow leaf curl viruses , 1997, Archives of Virology.

[4]  M. Lapidot,et al.  Breeding tomatoes for resistance to tomato yellow leaf curl begomovirus , 2000 .

[5]  T. Dawson,et al.  Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? , 2003 .

[6]  Peter G. Jones,et al.  The ecology and epidemiology of whitefly-transmitted viruses in Latin America. , 2004, Virus research.

[7]  A. Peterson,et al.  INTERPRETATION OF MODELS OF FUNDAMENTAL ECOLOGICAL NICHES AND SPECIES' DISTRIBUTIONAL AREAS , 2005 .

[8]  T. Dawson,et al.  Selecting thresholds of occurrence in the prediction of species distributions , 2005 .

[9]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[10]  R. Pearson,et al.  Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar , 2006 .

[11]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[12]  M. Lapidot,et al.  Development of a Scale for Evaluation of Tomato yellow leaf curl virus Resistance Level in Tomato Plants. , 2006, Phytopathology.

[13]  Christopher Daly,et al.  Guidelines for assessing the suitability of spatial climate data sets , 2006 .

[14]  K. Zambrano,et al.  First Report of Tomato yellow leaf curl virus in Venezuela. , 2007, Plant disease.

[15]  A. Townsend Peterson,et al.  Rethinking receiver operating characteristic analysis applications in ecological niche modeling , 2008 .

[16]  J. Elith,et al.  Species Distribution Models: Ecological Explanation and Prediction Across Space and Time , 2009 .

[17]  Sunil Kumar,et al.  Potential habitat distribution for the freshwater diatom Didymosphenia geminata in the continental US , 2009 .

[18]  Sunil Kumar,et al.  Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia , 2009 .

[19]  Sam Veloz,et al.  Spatially autocorrelated sampling falsely inflates measures of accuracy for presence‐only niche models , 2009 .

[20]  Hui Zhang,et al.  Molecular characterization and pathogenicity of tomato yellow leaf curl virus in China , 2009, Virus Genes.

[21]  M. Aranda,et al.  Climate change effects on physiology and population processes of hosts and vectors that influence the spread of hemipteran‐borne plant viruses , 2009 .

[22]  Judith K. Brown,et al.  Differentiation of Tomato yellow leaf curl virus and Tomato yellow leaf curl Sardinia virus using real-time TaqMan PCR. , 2010, Journal of virological methods.

[23]  P. Lemey,et al.  The Spread of Tomato Yellow Leaf Curl Virus from the Middle East to the World , 2010, PLoS pathogens.

[24]  H. Hasumi,et al.  Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity , 2010, Journal of Climate.

[25]  Richard E. Lee,et al.  Low Temperature Biology of Insects: Index , 2010 .

[26]  B. Thomma,et al.  Emerging viral diseases of tomato crops. , 2010, Molecular plant-microbe interactions : MPMI.

[27]  Richard E. Glor,et al.  ENMTools: a toolbox for comparative studies of environmental niche models , 2010 .

[28]  Trevor Hastie,et al.  A statistical explanation of MaxEnt for ecologists , 2011 .

[29]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[30]  M. Ghanim,et al.  Bemisia tabaci – Tomato Yellow Leaf Curl Virus Interaction Causing Worldwide Epidemics , 2011 .

[31]  H. Tsueda,et al.  Reproductive differences between Q and B whiteflies, Bemisia tabaci, on three host plants and negative interactions in mixed cohorts , 2011 .

[32]  J. Navas-Castillo,et al.  Emerging virus diseases transmitted by whiteflies. , 2011, Annual review of phytopathology.

[33]  Shaoli Wang,et al.  Rapid Spread of Tomato Yellow Leaf Curl Virus in China Is Aided Differentially by Two Invasive Whiteflies , 2012, PloS one.

[34]  Lukas H. Meyer,et al.  Summary for Policymakers , 2022, The Ocean and Cryosphere in a Changing Climate.

[35]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[36]  A. Townsend Peterson,et al.  Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas , 2012 .

[37]  K. Taylor,et al.  Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere‐ocean climate models , 2012 .

[38]  Bruce L. Webber,et al.  CliMond: global high‐resolution historical and future scenario climate surfaces for bioclimatic modelling , 2012 .

[39]  D. Lawrence,et al.  The CCSM4 Land Simulation, 1850-2005: Assessment of Surface Climate and New Capabilities , 2012 .

[40]  T. Martin,et al.  Dynamics of the invasive Bemisia tabaci (Homoptera: Aleyrodidae) Mediterranean (MED) species in two West African countries , 2013 .

[41]  Adel A. Al-Shehi,et al.  Identification of Whitefly (Bemicia tabaci Genn.) Biotypes and Associated Bacterial Symbionts in Oman , 2013 .

[42]  Matthew J. Smith,et al.  Protected areas network is not adequate to protect a critically endangered East Africa Chelonian: Modelling distribution of pancake tortoise, Malacochersus tornieri under current and future climates , 2013, bioRxiv.

[43]  M. White,et al.  Selecting thresholds for the prediction of species occurrence with presence‐only data , 2013 .

[44]  L. Kumar,et al.  Risk Levels of Invasive Fusarium oxysporum f. sp. in Areas Suitable for Date Palm (Phoenix dactylifera) Cultivation under Various Climate Change Projections , 2013, PloS one.

[45]  Robert A. Boria,et al.  Spatial filtering to reduce sampling bias can improve the performance of ecological niche models , 2014 .

[46]  Sunil Kumar,et al.  Evaluating correlative and mechanistic niche models for assessing the risk of pest establishment , 2014 .

[47]  J. Houghton,et al.  Climate Change 2013 - The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2014 .

[48]  Vittorio Rossi,et al.  Scientific Opinion on the pest categorisation of Tomato yellow leaf curl virus and related viruses causing tomato yellow leaf curl disease in Europe , 2014 .

[49]  J. E. Byers,et al.  Climate controls the distribution of a widespread invasive species: implications for future range expansion , 2014 .

[50]  V. Dike,et al.  Modelling present and future African climate using CMIP5 scenarios in HadGEM2‐ES , 2014 .

[51]  Sunil Kumar,et al.  Assessing the Potential for Establishment of Western Cherry Fruit Fly using Ecological Niche Modeling , 2014, Journal of economic entomology.

[52]  Jason L. Brown SDMtoolbox: a python‐based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses , 2014 .

[53]  N. Nakicenovic,et al.  Summary for policymakers , 1963 .

[54]  Matthew E. Aiello-Lammens,et al.  spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models , 2015 .

[55]  M. Ghanim,et al.  Replication of Tomato Yellow Leaf Curl Virus in Its Whitefly Vector, Bemisia tabaci , 2015, Journal of Virology.

[56]  S. Legarrea,et al.  Temporal Effects of a Begomovirus Infection and Host Plant Resistance on the Preference and Development of an Insect Vector, Bemisia tabaci, and Implications for Epidemics , 2015, PloS one.

[57]  Sunil Kumar,et al.  Caveats for correlative species distribution modeling , 2015, Ecol. Informatics.

[58]  Shaoli Wang,et al.  Transmission of Tomato Yellow Leaf Curl Virus by Bemisia tabaci as Affected by Whitefly Sex and Biotype , 2015, Scientific Reports.

[59]  François Rebaudo,et al.  Changes in the distribution of multispecies pest assemblages affect levels of crop damage in warming tropical Andes , 2015, Global change biology.

[60]  Hugh A. Smith,et al.  Evaluating Weeds as Hosts of Tomato yellow leaf curl virus , 2015, Environmental entomology.

[61]  A. Honěk,et al.  Invasive Insects Differ from Non-Invasive in Their Thermal Requirements , 2015, PloS one.

[62]  R. Gilbertson,et al.  Role of the Insect Supervectors Bemisia tabaci and Frankliniella occidentalis in the Emergence and Global Spread of Plant Viruses. , 2015, Annual review of virology.

[63]  Sunil Kumar,et al.  Assessing the Global Risk of Establishment of Cydia pomonella (Lepidoptera: Tortricidae) Using CLIMEX and MaxEnt Niche Models , 2015, Journal of economic entomology.

[64]  R. Gilbertson,et al.  A review of geminivirus diseases in vegetables and other crops in Brazil: current status and approaches for management , 2016 .

[65]  Sunil Kumar,et al.  Mapping Global Potential Risk of Mango Sudden Decline Disease Caused by Ceratocystis fimbriata , 2016, PloS one.

[66]  S. Winter,et al.  Diversity of Bemisia tabaci in Thailand and Vietnam and indications of species replacement , 2016 .

[67]  H. Byun,et al.  Tomato yellow leaf curl virus (TYLCV-IL): a seed-transmissible geminivirus in tomatoes , 2016, Scientific Reports.

[68]  H. Czosnek,et al.  Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures , 2016, Scientific Reports.

[69]  E. Kil,et al.  Seed Transmission of Tomato yellow leaf curl virus in White Soybean (Glycine max) , 2017, The plant pathology journal.

[70]  Thales F. M. Carvalho,et al.  Geminivirus data warehouse: a database enriched with machine learning approaches , 2017, BMC Bioinformatics.

[71]  A. Zeilinger,et al.  Conflicting Effects of Climate and Vector Behavior on the Spread of a Plant Pathogen , 2017 .

[72]  H. Byun,et al.  Seed transmission of Tomato yellow leaf curl virus in sweet pepper (Capsicum annuum) , 2017, European Journal of Plant Pathology.

[73]  L. Kumar,et al.  Mapping global risk levels of Bemisia tabaci in areas of suitability for open field tomato cultivation under current and future climates , 2018, PloS one.