Enhanced thermoelectric properties of Bi₀.₅Sb₁.₅Te₃ films by chemical vapor transport process.

Bi₀.₅Sb₁.₅Te₃ films were prepared by a novel chemical vapor transport process through delicate controlling the temperature of the substrate and vapor source. The power factor reaches 30 μW cm⁻¹ K⁻¹ at room temperature, which is much higher than the value of the Bi₀.₅Sb₁.₅Te₃ films prepared by other techniques. The enhancement of thermoelectric properties might be attributed to the higher carrier mobility (252 cm² V⁻¹ s⁻¹), coming from the effective interparticle contiguity of (00L) oriented nanoplates embedded in the present Bi₀.₅Sb₁.₅Te₃ films.

[1]  Lidong Chen,et al.  A general strategy to bismuth chalcogenide films by chemical vapor transport , 2011 .

[2]  Lidong Chen,et al.  Synthesis and characterization of nanostructured bismuth selenide thin films. , 2010, Dalton transactions.

[3]  Koji Miyazaki,et al.  Improved thermoelectric performance of highly-oriented nanocrystalline bismuth antimony telluride thin films , 2010 .

[4]  Lidong Chen,et al.  Enhancing thermoelectric performance of bismuth selenide films by constructing a double-layer nanostructure , 2010 .

[5]  H. Hng,et al.  Sb2Te3 Nanoparticles with Enhanced Seebeck Coefficient and Low Thermal Conductivity , 2010 .

[6]  Chih-Yu Chang,et al.  Thermoelectric properties of electrically stressed Sb/Bi–Sb–Te multilayered films , 2010 .

[7]  M. Dresselhaus,et al.  Structure study of bulk nanograined thermoelectric bismuth antimony telluride. , 2009, Nano letters.

[8]  C. Liao,et al.  Enhancement of thermoelectric properties of sputtered Bi-Sb-Te thin films by electric current stressing , 2008 .

[9]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[10]  Han Li,et al.  Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure , 2007 .

[11]  Jun Jiang,et al.  Effect of TeI4 content on the thermoelectric properties of n-type Bi–Te–Se crystals prepared by zone melting , 2005 .

[12]  Zhong Lin Wang,et al.  Bismuth telluride hexagonal nanoplatelets and their two-step epitaxial growth. , 2005, Journal of the American Chemical Society.

[13]  H. Bottner,et al.  New thermoelectric components using microsystem technologies , 2004, Journal of Microelectromechanical Systems.

[14]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[15]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[16]  Il-ho Kim Electronic transport properties of the flash-evaporated p-type Bi0.5Sb1.5Te3 thermoelectric thin films , 2000 .

[17]  Jerry R. Meyer,et al.  Antisite defects of Bi2Te3 thin films , 1999 .

[18]  G. R. Miller,et al.  Evidence for the existence of antistructure defects in bismuth telluride by density measurements , 1964 .

[19]  M. Stordeur,et al.  Antisite defects in Sb2-xBixTe3 mixed crystals , 1988 .