Incident-angle-modulated molecular plasmonic switches: a case of weak exciton-plasmon coupling.

We have designed an angularly tunable plasmonic system that consists of Au nanodisks in combination with molecules of photoswitchable resonance, spiropyran, to gain new insights into weak exciton-plasmon couplings. In the weak exciton-plasmon coupling regime, switching molecular resonance can induce localized surface plasmon resonance (LSPR) peak shifts due to the change in the refractive index of the molecular materials. On the basis of the angle-resolved spectroscopic study of the nanodisk-spiropyran system both with and without UV irradiation, we reveal an unusual "zigzag" curve for the LSPR peak shifts (due to the photoswitching of the molecular resonance) as a function of the original LSPR peak wavelength. A further theoretical analysis attributes the "zigzag" curve to two significant competing effects that depend on the incident angle of the probe light: plasmon-enhanced molecular resonance absorption and LSPR sensitivity to the surroundings' refractive index.

[1]  B. K. Juluri,et al.  Dynamic Tuning of Plasmon–Exciton Coupling in Arrays of Nanodisk–J‐aggregate Complexes , 2010, Advanced materials.

[2]  Yuebing Zheng,et al.  Light‐Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals , 2008 .

[3]  Jianfang Wang,et al.  Effects of dyes, gold nanocrystals, pH, and metal ions on plasmonic and molecular resonance coupling. , 2010, Journal of the American Chemical Society.

[4]  Rostislav Bukasov,et al.  Highly tunable infrared extinction properties of gold nanocrescents. , 2007, Nano letters.

[5]  T. Ebbesen,et al.  Terahertz All‐Optical Molecule‐ Plasmon Modulation , 2006 .

[6]  Nikolay I. Zheludev,et al.  Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals , 2008 .

[7]  Rosalba Saija,et al.  Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna. , 2010, ACS nano.

[8]  Paul S Weiss,et al.  Active molecular plasmonics: controlling plasmon resonances with molecular switches. , 2009, Nano letters.

[9]  Jianfang Wang,et al.  Resonance-coupling-based plasmonic switches. , 2010, Small.

[10]  Jianfang Wang,et al.  Coupling between molecular and plasmonic resonances in freestanding dye-gold nanorod hybrid nanostructures. , 2008, Journal of the American Chemical Society.

[11]  T. Odom,et al.  Using the angle-dependent resonances of molded plasmonic crystals to improve the sensitivities of biosensors. , 2010, Nano letters.

[12]  R. V. Van Duyne,et al.  Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome p450. , 2006, Journal of the American Chemical Society.

[13]  N. Fang,et al.  Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy. , 2009, ACS nano.

[14]  J. Hafner,et al.  A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. , 2008, ACS nano.

[15]  Yuebing Zheng,et al.  Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays , 2008 .

[16]  Taewook Kang,et al.  Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer , 2007, Nature Methods.

[17]  K. MacDonald,et al.  Active plasmonics: current status , 2010 .

[18]  T. Ebbesen,et al.  Molecule–Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All‐Optical Switching , 2006 .

[19]  M E Abdelsalam,et al.  Strong coupling between localized plasmons and organic excitons in metal nanovoids. , 2006, Physical review letters.

[20]  S. J. van der Molen,et al.  Light-controlled conductance switching of ordered metal-molecule-metal devices. , 2009, Nano letters.

[21]  B. K. Juluri,et al.  Coupling between Molecular and Plasmonic Resonances: Effect of Molecular Absorbance , 2009 .

[22]  Mark L Brongersma,et al.  A nonvolatile plasmonic switch employing photochromic molecules. , 2008, Nano letters.

[23]  Jaebeom Lee,et al.  Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. , 2007, Nature materials.

[24]  Jianfang Wang,et al.  Plasmon–molecule interactions , 2010 .

[25]  Wayne Dickson,et al.  Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies. , 2007, Nano letters.

[26]  T. Ebbesen,et al.  Molecule-light complex: dynamics of hybrid molecule-surface plasmon states. , 2009, Angewandte Chemie.

[27]  G. Schatz,et al.  Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. , 2007, Journal of the American Chemical Society.

[28]  J. O. Jeppesen,et al.  Turning on resonant SERRS using the chromophore-plasmon coupling created by host-guest complexation at a plasmonic nanoarray. , 2010, Journal of the American Chemical Society.

[29]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[30]  George C Schatz,et al.  Localized surface plasmon resonance spectroscopy near molecular resonances. , 2006, Journal of the American Chemical Society.

[31]  Peter Nordlander,et al.  Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. , 2008, Nano letters.

[32]  James M Tour,et al.  Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments. , 2008, Nano letters.

[33]  Andreas Hohenau,et al.  Active plasmonic devices with anisotropic optical response: a step toward active polarizer. , 2009, Nano letters.

[34]  M. Achermann Exciton−Plasmon Interactions in Metal−Semiconductor Nanostructures , 2010 .

[35]  Wayne Dickson,et al.  Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. , 2008, Nano letters.

[36]  Bartosz A Grzybowski,et al.  Nanoparticles functionalised with reversible molecular and supramolecular switches. , 2010, Chemical Society reviews.

[37]  B. Feringa,et al.  Light switching of molecules on surfaces. , 2009, Annual review of physical chemistry.

[38]  S. Kobatake,et al.  Light-Controllable Surface Plasmon Resonance Absorption of Gold Nanoparticles Covered with Photochromic Diarylethene Polymers , 2009 .

[39]  Tobias Ambjörnsson,et al.  Observing plasmonic-molecular resonance coupling on single gold nanorods. , 2010, Nano letters.

[40]  J. Ghilane,et al.  Giant plasmon resonance shift using poly(3,4-ethylenedioxythiophene) electrochemical switching. , 2010, Journal of the American Chemical Society.

[41]  J. F. Stoddart,et al.  Changing stations in single bistable rotaxane molecules under electrochemical control. , 2010, ACS nano.

[42]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[43]  C. Lienau,et al.  An unusual marriage: coupling molecular excitons to surface plasmon polaritons in metal nanostructures. , 2010, Angewandte Chemie.

[44]  H. Lezec,et al.  All-optical modulation by plasmonic excitation of CdSe quantum dots , 2007 .