Sintering dense nanocrystalline ceramics without final-stage grain growth

Sintering is the process whereby interparticle pores in a granular material are eliminated by atomic diffusion driven by capillary forces. It is the preferred manufacturing method for industrial ceramics. The observation of Burke and Coble that certain crystalline granular solids could gain full density and translucency by solid-state sintering was an important milestone for modern technical ceramics. But these final-stage sintering processes are always accompanied by rapid grain growth, because the capillary driving forces for sintering (involving surfaces) and grain growth (involving grain boundaries) are comparable in magnitude, both being proportional to the reciprocal grain size. This has greatly hampered efforts to produce dense materials with nanometre-scale structure (grain size less than 100 nm), leading many researchers to resort to the ‘brute force’ approach of high-pressure consolidation at elevated temperatures. Here we show that fully dense cubic Y2O3 (melting point, 2,439 °C) with a grain size of 60 nm can be prepared by a simple two-step sintering method, at temperatures of about 1,000 °C without applied pressure. The suppression of the final-stage grain growth is achieved by exploiting the difference in kinetics between grain-boundary diffusion and grain-boundary migration. Such a process should facilitate the cost-effective preparation of other nanocrystalline materials for practical applications.

[1]  R. P. Rusin,et al.  Combined-Stage Sintering Model , 1992 .

[2]  J. D. Yoreo,et al.  Recovery of surfaces from impurity poisoning during crystal growth , 1999, Nature.

[3]  G. Whitesides,et al.  Electrical Breakdown of Aliphatic and Aromatic Self-Assembled Monolayers Used as Nanometer-Thick Organic Dielectrics , 1999 .

[4]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[5]  K. Niihara,et al.  A superplastic covalent crystal composite , 1990, Nature.

[6]  H. Hahn,et al.  Reduced‐Pressure Chemical Vapor Synthesis of Nanocrystalline Silicon Carbide Powders , 1998 .

[7]  R. M. Cannon,et al.  Current Paradigms in Powder Processing , 1978 .

[8]  T. C. Mcgill,et al.  Fundamental Transition in the Electronic Nature of Solids , 1969 .

[9]  Tatsuya Okubo,et al.  Densification of nanostructured titania assisted by a phase transformation , 1992, Nature.

[10]  M. Mayo,et al.  Processing of nanocrystalline ceramics , 1990 .

[11]  L. V. Ruyven The Position of the Fermi Level at a Hetero‐Junction Interface , 1964 .

[12]  G. Gottstein,et al.  Influence of triple junctions on grain boundary motion , 1998 .

[13]  J. Libman,et al.  Simultaneous Control of Surface Potential and Wetting of Solids with Chemisorbed Multifunctional Ligands , 1997 .

[14]  I. Chen,et al.  Sintering of Fine Oxide Powders: II, Sintering Mechanisms , 1997 .

[15]  Vladimiro Mujica,et al.  The injecting energy at molecule/metal interfaces: Implications for conductance of molecular junctions from an ab initio molecular description , 1999 .

[16]  F.T. Hong,et al.  Molecular electronics: science and technology for the future , 1994, IEEE Engineering in Medicine and Biology Magazine.

[17]  Federico Capasso,et al.  Doping interface dipoles: Tunable heterojunction barrier heights and band‐edge discontinuities by molecular beam epitaxy , 1985 .

[18]  E. Yablonovitch,et al.  Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates , 1990 .

[19]  I. Chen,et al.  Sintering of Fine Oxide Powders: I, Microstructural Evolution , 1996 .

[20]  Herbert Herman,et al.  Treatise on Materials Science and Technology , 1979 .

[21]  I-Wei Chen,et al.  Development of Superplastic Structural Ceramics , 1990 .

[22]  H. Gleiter Nanocrystalline Materials and Nanometer-Sized Glasses , 1989 .

[23]  R. L. Coble,et al.  Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models , 1961 .

[24]  David Cahen,et al.  Molecular electronic tuning of Si surfaces , 1997 .

[25]  T. M. Hare,et al.  Processing of crystalline ceramics , 1978 .

[26]  Conyers Herring,et al.  Effect of Change of Scale on Sintering Phenomena , 1950 .

[27]  Mathieu Kemp,et al.  Molecular Wires: Charge Transport, Mechanisms, and Control , 1998 .

[28]  R. M. Cannon,et al.  Plastic Deformation of Fine‐Grained Alumina (Al2O3): I, Interface‐Controlled Diffusional Creep , 1980 .

[29]  R. Valiev,et al.  Low-temperature superplasticity in nanostructured nickel and metal alloys , 1999, Nature.

[30]  James M. Tour,et al.  Molecular Scale Electronics: A Synthetic/Computational Approach to Digital Computing , 1998 .

[31]  E. K. Wilson DNA CONDUCTANCE CONVERGENCE , 1999 .

[32]  R. Raj,et al.  Grain‐Growth Transition During Sintering of Colloidally Prepared Alumina Powder Compacts , 1988 .

[33]  M. Ashby,et al.  Interface controlled diffusional creep , 1983 .

[34]  Richard L. Martin,et al.  CONTROLLING CHARGE INJECTION IN ORGANIC ELECTRONIC DEVICES USING SELF-ASSEMBLED MONOLAYERS , 1997 .

[35]  M. Majda,et al.  Mercury−Mercury Tunneling Junctions. 1. Electron Tunneling Across Symmetric and Asymmetric Alkanethiolate Bilayers , 1999 .

[36]  J. Burke Progress in ceramic science , 1963 .

[37]  I. Chen,et al.  Grain boundary mobility in Y2O3 : Defect mechanism and dopant effects , 1996 .

[38]  B. Kear,et al.  High pressure/low temperature sintering of nanocrystalline alumina , 1998 .

[39]  J. Libman,et al.  Controlling the Work Function of GaAs by Chemisorption of Benzoic Acid Derivatives , 1997 .

[40]  T. D. Dunbar,et al.  Electron Transfer through Organic Molecules , 1999 .