Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons

Three types of looming-selective neurons have been found in the nucleus rotundus of pigeons, each computing a different optical variable related to image expansion of objects approaching on a direct collision course with the bird. None of these neurons respond to simulated approach toward stationary objects. A detailed analysis of these neurons' firing pattern to approaching objects of different sizes and velocities shows that one group of neurons signals relative rate of expansion τ (tau), a second group signals absolute rate of expansion ρ (rho), and a third group signals yet another optical variable η (eta). The ρ parameter is required for the computation of both τ and η, whose respective ecological functions probably provide precise 'time-to-collision' information and 'early warning' detection for large approaching objects.

[1]  W. Hamilton,et al.  Trichromatic vision in the pigeon as illustrated by the spectral hue discrimination curve. , 1933 .

[2]  D S BLOUGH,et al.  Spectral sensitivity in the pigeon. , 1957, Journal of the Optical Society of America.

[3]  James A. Caviness,et al.  Persistent Fear Responses in Rhesus Monkeys to the Optical Stimulus of "Looming" , 1962, Science.

[4]  E. Marg THE ACCESSORY OPTIC SYSTEM * , 1964 .

[5]  W. Schiff PERCEPTION OF IMPENDING COLLISION: A STUDY OF VISUALLY DIRECTED AVOIDANT BEHAVIOR. , 1965, Psychological monographs.

[6]  H. Karten,et al.  The afferent connections of the nucleus rotundus in the pigeon. , 1966, Brain research.

[7]  J. Gibson The Senses Considered As Perceptual Systems , 1967 .

[8]  W. N. Hayes,et al.  Visual alarm reactions in turtles. , 1967, Animal behaviour.

[9]  E. Tronick,et al.  Approach response of domestic chicks to an optical display. , 1967, Journal of comparative and physiological psychology.

[10]  H. Karten,et al.  Rostral projections of the optic tectum and the nucleus rotundus in the pigeon , 1967 .

[11]  Harvey J. Karten,et al.  THE ORGANIZATION OF THE AVIAN TELENCEPHALON AND SOME SPECULATIONS ON THE PHYLOGENY OF THE AMNIOTE TELENCEPHALON * , 1969 .

[12]  P Sterling,et al.  Visual receptive fields in the superior colliculus of the cat. , 1969, Journal of neurophysiology.

[13]  W. Hodos Color Discrimination Deficits After Lesions of the Nucleus Rotundus in Pigeons , 1969 .

[14]  W Hodos,et al.  Telencephalic projections of the nucleus rotundus in the pigeon (Columba livia) , 1970, The Journal of comparative neurology.

[15]  D. Jassik-Gerschenfeld,et al.  Receptive field properties of directionally selective units in the pigeon's optic tectum. , 1970, Brain research.

[16]  A. M. Granda,et al.  The Spectral Sensitivity of Single Units in the Nucleus Rotundus of Pigeon, Columba livia , 1971, The Journal of general physiology.

[17]  T. Bower,et al.  Infant responses to approaching objects: An indicator of response to distal variables , 1971 .

[18]  W. Ball,et al.  Infant Responses to Impending Collision: Optical and Real , 1971, Science.

[19]  W. Muntz Inert Absorbing and Reflecting Pigments , 1972 .

[20]  A. Wright,et al.  Psychometric and psychophysical hue discrimination functions for the pigeon. , 1972, Vision research.

[21]  D. Jassik-Gerschenfeld,et al.  Visual receptive fields of single cells in the pigeon's optic tectum. , 1972, Brain research.

[22]  P. Blough Wavelength generalization and discrimination in the pigeon , 1972 .

[23]  A. M. Granda,et al.  Opponent-color units in the thalamus of the pigeon (Columba livia). , 1973, Vision Research.

[24]  Lawrence M. Dill,et al.  The escape response of the zebra danio (Brachydanio rerio) I. The stimulus for escape , 1974 .

[25]  G Rizzolatti,et al.  Inhibitory effect of remote visual stimuli on visual responses of cat superior colliculus: spatial and temporal factors. , 1974, Journal of neurophysiology.

[26]  A. Pearlman,et al.  Single unit receptive fields and the cellular layers of the pigeon optic tectum. , 1974, Brain research.

[27]  K. Nakayama,et al.  Optical Velocity Patterns, Velocity-Sensitive Neurons, and Space Perception: A Hypothesis , 1974, Perception.

[28]  W. Hodos,et al.  Intensity difference thresholds in pigeons after lesions of the tectofugal and thalamofugal visual pathways. , 1974, Journal of comparative and physiological psychology.

[29]  Harvey J. Karten,et al.  The Structural Organization of Avian Brain: An Overview , 1974 .

[30]  D. Norren Two short wavelength sensitive cone systems in pigeon, chicken and daw , 1975, Vision Research.

[31]  H. Karten,et al.  Organization of the tectofugal visual pathway in the pigeon: A retrograde transport study , 1976, The Journal of comparative neurology.

[32]  D. Yager,et al.  Psychophysical studies of pigeon color vision—I. Photopic spectral sensitivity , 1976, Vision Research.

[33]  David N. Lee,et al.  A Theory of Visual Control of Braking Based on Information about Time-to-Collision , 1976, Perception.

[34]  B. Frost,et al.  Motion characteristics of single units in the pigeon optic tectum , 1976, Vision Research.

[35]  S. Hunt,et al.  Observations on the projections and intrinsic organization of the pigeon optic tectum: An autoradiographic study based on anterograde and retrograde, axonal and dendritic flow , 1976, The Journal of comparative neurology.

[36]  O. Grüsser,et al.  Neurophysiology of the Anuran Visual System , 1976 .

[37]  G. Schlotterer Response of the locust descending movement detector neuron to rapidly approaching and withdrawing visual stimuli , 1977 .

[38]  A. Revzin Functional Localization in the Nucleus Rotundus , 1977 .

[39]  R. Lange,et al.  Response of movement detecting cells in the optic tectum of pigeons to change of wavelength , 1977, Vision Research.

[40]  W. Hodos,et al.  Intensity difference thresholds after lesions of the visual Wulst in pigeons. , 1977, Journal of comparative and physiological psychology.

[41]  J. Bowmaker The visual pigments, oil droplets and spectral sensitivity of the pigeon , 1977, Vision Research.

[42]  W. Muntz,et al.  Spectral sensitivity of the red and yellow oil droplet fields of the pigeon (Columba livia) , 1978, Nature.

[43]  J. Nelson,et al.  Orientation-selective inhibition from beyond the classic visual receptive field , 1978, Brain Research.

[44]  B. J. Frost,et al.  Moving background patterns alter directionally specific responses of pigeon tectal neurons , 1978, Brain Research.

[45]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[46]  W. Crossland,et al.  Topographic projections of the retina and optic tectum upon the ventral lateral geniculate nucleus in the chick , 1979, The Journal of comparative neurology.

[47]  A. M. Granda,et al.  Neural mechanisms of behavior in the pigeon , 1979 .

[48]  D. N. Lee The optic flow field: the foundation of vision. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[49]  Lee Dn,et al.  The optic flow field: the foundation of vision. , 1980 .

[50]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[51]  J. Bowmaker Colour vision in birds and the role of oil droplets , 1980, Trends in Neurosciences.

[52]  E. Batschelet Circular statistics in biology , 1981 .

[53]  David N. Lee,et al.  Plummeting gannets: a paradigm of ecological optics , 1981, Nature.

[54]  David N. Lee,et al.  Regulation of gait in long jumping. , 1982 .

[55]  H. Maturana,et al.  Color-opponent responses in the avian lateral geniculate: A study in the quail (Coturnix coturnix japonica) , 1982, Brain Research.

[56]  H. Wagner Flow-field variables trigger landing in flies , 1982, Nature.

[57]  K. Nakayama,et al.  Single visual neurons code opposing motion independent of direction. , 1983, Science.

[58]  H. Maturana,et al.  The neurophysiology of avian color vision. Comparative neurobiology of vision in vertebrates an international symposium. Punta de tralca, chile, 25-27 november, 1982 , 1983 .

[59]  H. Vanegas,et al.  Comparative neurology of the optic tectum , 1984 .

[60]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  K. Macko,et al.  Near-field acuity changes after visual system lesions in pigeons. II. Telencephalon , 1984, Behavioural Brain Research.

[62]  K. Macko,et al.  Near-field acuity after visual system lesions in pigeons. I. Thalamus , 1984, Behavioural Brain Research.

[63]  Barrie J. Frost,et al.  Neural Mechanisms for Detecting Object Motion and Figure-Ground Boundaries, Contrasted with Self-Motion Detecting Systems , 1985 .

[64]  D. Ingle,et al.  Brain mechanisms and spatial vision , 1985 .

[65]  P. Hammond Visual Cortical Processing: Texture Sensitivity and Relative Motion , 1985 .

[66]  David N. Lee,et al.  Visual Timing of Interceptive Action , 1985 .

[67]  J Allman,et al.  Direction- and Velocity-Specific Responses from beyond the Classical Receptive Field in the Middle Temporal Visual Area (MT) , 1985, Perception.

[68]  S. Zeki,et al.  Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex , 1985, Nature.

[69]  G. Mandl Responses of visual cells in cat superior colliculus to relative pattern movement , 1985, Vision Research.

[70]  D. Ingle,et al.  Action-Oriented Approaches to Visuo-Spatial Brain Functions , 1985 .

[71]  Patrick Cavanagh,et al.  Color and luminance share a common motion pathway , 1985, Vision Research.

[72]  Albert Yonas,et al.  The Development of Sensitivity of Kenetic, Binocular and Pictorial Depth Information in Human Infants , 1985 .

[73]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[74]  K. Tanaka,et al.  Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  P Redgrave,et al.  Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  D. B. Bender,et al.  Global visual processing in the monkey superior colliculus , 1986, Brain Research.

[77]  William Hodos,et al.  Size-threshold changes after lesions of the visual telencephalon in pigeons , 1986, Behavioural Brain Research.

[78]  Brain Mechanisms and Spatial Vision , 1986 .

[79]  D H Hubel,et al.  Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[81]  DH Hubel,et al.  Segregation of form, color, and stereopsis in primate area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[82]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  G. Orban,et al.  The suppressive influence of moving textured backgrounds on responses of cat striate neurons to moving bars. , 1987, Journal of neurophysiology.

[84]  G. Orban,et al.  Influence of a moving textured background on direction selectivity of cat striate neurons. , 1987, Journal of neurophysiology.

[85]  Martin Egelhaaf,et al.  Visual course control in flies relies on neuronal computation of object and background motion , 1988, Trends in Neurosciences.

[86]  J. Ewert,et al.  Influence of stationary and moving textured backgrounds on the response of visual neurons in toads (Bufo bufo L.). , 1988, Brain, behavior and evolution.

[87]  W. Hodos,et al.  Intensity difference thresholds after lesions of ectostriatum in pigeons , 1988, Behavioural Brain Research.

[88]  W Hodos,et al.  Size-difference thresholds after lesions of thalamic visual nuclei in pigeons , 1988, Visual Neuroscience.

[89]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[90]  Peter Redgrave,et al.  Cardiovascular and respiratory changes elicited by stimulation of rat superior colliculus , 1988, Brain Research Bulletin.

[91]  H. Karten,et al.  The Origins of Neocortex: Connections and Lamination as Distinct Events in Evolution , 1989, Journal of Cognitive Neuroscience.

[92]  G. Orban,et al.  Laminar analysis of motion information processing in macaque V5 , 1989, Brain Research.

[93]  W. Hodos,et al.  Intensity, color, and pattern discrimination deficits after lesions of the core and belt regions of the ectostriatum , 1989, Visual Neuroscience.

[94]  K. Tanaka,et al.  Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. , 1989, Journal of neurophysiology.

[95]  B. J. Frost,et al.  The processing of object and self-motion in the tectofugal and accessory optic pathways of birds , 1990, Vision Research.

[96]  Eka Swadiansa The hypothesis , 1990 .

[97]  R. Wurtz,et al.  The role of disparity-sensitive cortical neurons in signalling the direction of self-motion , 1990, Nature.

[98]  P R DeLucia,et al.  Pictorial and motion-based information for depth perception. , 1991, Journal of experimental psychology. Human perception and performance.

[99]  Stuart Anstis,et al.  The contribution of color to motion in normal and color-deficient observers , 1991, Vision Research.

[100]  D. B. Bender,et al.  Selectivity for relative motion in the monkey superior colliculus. , 1991, Journal of neurophysiology.

[101]  H. Karten,et al.  Are Visual Hierarchies in the Brains of the Beholders? Constancy and Variability in the Visual System of Birds and Mammals , 1991 .

[102]  B. Frost,et al.  Time to collision is signalled by neurons in the nucleus rotundus of pigeons , 1992, Nature.

[103]  P. Simmons,et al.  Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. , 1992, Journal of neurophysiology.

[104]  F C Rind,et al.  Orthopteran DCMD neuron: a reevaluation of responses to moving objects. II. Critical cues for detecting approaching objects. , 1992, Journal of neurophysiology.

[105]  H. Bischof,et al.  The organization of the tectofugal pathway in birds: a comparative review , 1993 .

[106]  Harvey J. Karten,et al.  The Avian Visual System and the Evolution of the Neocortex , 1993 .

[107]  R. Robertson,et al.  Collision avoidance of flying locusts: steering torques and behaviour , 1993 .

[108]  Subcortical analysis of visual motion: relative motion, figure-ground discrimination and self-induced optic flow. , 1993, Reviews of oculomotor research.

[109]  R. Born,et al.  Segregation of global and local motion processing in primate middle temporal visual area , 1993, Nature.

[110]  B. Frost,et al.  Responses of pigeon vestibulocerebellar neurons to optokinetic stimulation. I. Functional organization of neurons discriminating between translational and rotational visual flow. , 1993, Journal of neurophysiology.

[111]  D. Regan,et al.  Dissociation of discrimination thresholds for time to contact and for rate of angular expansion , 1993, Vision Research.

[112]  J R Tresilian,et al.  Four Questions of Time to Contact: A Critical Examination of Research on Interceptive Timing , 1993, Perception.

[113]  B. Frost,et al.  Visual processing in pigeon nucleus rotundus: Luminance, color, motion, and looming subdivisions , 1993, Visual Neuroscience.

[114]  Patrick R. Green,et al.  Perception and Motor Control in Birds , 1994, Springer Berlin Heidelberg.

[115]  H. P. Zeigier,et al.  Vision, brain, and behavior in birds. , 1994 .

[116]  Barrie J. Frost,et al.  The Analysis of Motion in the Visual Systems of Birds , 1994 .

[117]  T D Albright,et al.  What happens if it changes color when it moves?: the nature of chromatic input to macaque visual area MT , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[118]  J. Movshon,et al.  Chromatic properties of neurons in macaque MT , 1994, Visual Neuroscience.

[119]  James E. Cutting,et al.  How we avoid collisions with stationary and moving objects. , 1995 .

[120]  G. Laurent,et al.  Elementary Computation of Object Approach by a Wide-Field Visual Neuron , 1995, Science.

[121]  J. Wann Anticipating arrival: is the tau margin a specious theory? , 1996, Journal of experimental psychology. Human perception and performance.

[122]  Svetha Venkatesh,et al.  From Living Eyes to Seeing Machines , 1997 .

[123]  Rind,et al.  The locust DCMD, a movement-detecting neurone tightly tuned to collision trajectories , 1997, The Journal of experimental biology.

[124]  B. Frost,et al.  Motion processing in pigeon tectum: equiluminant chromatic mechanisms , 1997, Experimental Brain Research.

[125]  R. Wurtz,et al.  Response to motion in extrastriate area MSTl: center-surround interactions. , 1998, Journal of neurophysiology.

[126]  C. Gilbert Adult cortical dynamics. , 1998, Physiological reviews.

[127]  Nicholas V. Swindale,et al.  Orientation tuning curves: empirical description and estimation of parameters , 1998, Biological Cybernetics.

[128]  B. Frost,et al.  Responses of neurons in the nucleus of the basal optic root to translational and rotational flowfields. , 1999, Journal of neurophysiology.

[129]  G. Laurent,et al.  Computation of Object Approach by a Wide-Field, Motion-Sensitive Neuron , 1999, The Journal of Neuroscience.

[130]  B. Frost,et al.  Complex spike activity of Purkinje cells in the ventral uvula and nodulus of pigeons in response to translational optic flow. , 1999, Journal of neurophysiology.

[131]  B J Frost,et al.  A common frame of reference for the analysis of optic flow and vestibular information. , 2000, International review of neurobiology.

[132]  R. Born Center-surround interactions in the middle temporal visual area of the owl monkey. , 2000, Journal of neurophysiology.