Geodesic Delaunay triangulation and witness complex in the plane

We introduce a novel feature size for bounded planar domains endowed with an intrinsic metric. Given a point <i>x</i> in such a domain <i>X</i>, the <i>homotopy feature size</i> of <i>X</i> at <i>x</i>, or hfs(<i>x</i>) for short, measures half the length of the shortest loop through <i>x</i> that is not null-homotopic in <i>X</i>. The resort to an intrinsic metric makes hfs(<i>x</i>) rather insensitive to the local geometry of <i>X</i>, in contrast with its predecessors (local feature size, weak feature size, homology feature size). This leads to a reduced number of samples that still capture the topology of <i>X.</i> Under reasonable sampling conditions involving hfs, we show that the geodesic Delaunay traingulation <i>D<sub>X</sub></i> (<i>L</i>) of a finite sampling <i>L</i> of <i>X</i> is homotopy equivalent to <i>X.</i> Moreover, <i>D<sub>X</sub></i> (<i>L</i>) is sandwiched between the geodesic witness complex <i>C<sup>W</sup><sub>X</sub></i> (<i>L</i>) and a relaxed version <i>C<sup>W</sup><sub>X, v</sub></i> (<i>L</i>), defined by a parameter <i>v.</i> Taking advantage of this fact, we prove that the homology of <i>D<sub>X</sub></i> (<i>L</i>) (and hence of <i>X</i>) can be retrieved by computing the persistent homology between <i>C<sup>W</sup><sub>X</sub></i> (<i>L</i>) and <i>C<sup>W</sup><sub>X, v</sub></i> (<i>L</i>). We propose algorithms for estimating hfs, selecting a landmark set of sufficient density, building its geodesic Delaunay triangulation, and computing the homology of <i>X</i> using <i>C<sup>W</sup><sub>X</sub></i> (<i>L</i>). We also present some simulation results in the context of sensor networks that corroborate our theoretical statements.

[1]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[2]  Gunnar E. Carlsson,et al.  Topological estimation using witness complexes , 2004, PBG.

[3]  Jie Gao,et al.  Boundary recognition in sensor networks by topological methods , 2006, MobiCom '06.

[4]  David Eppstein,et al.  The Crust and the beta-Skeleton: Combinatorial Curve Reconstruction , 1998, Graph. Model. Image Process..

[5]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[6]  H. Fédérer Geometric Measure Theory , 1969 .

[7]  Leonidas J. Guibas,et al.  Manifold Reconstruction in Arbitrary Dimensions Using Witness Complexes , 2009, Discret. Comput. Geom..

[8]  Abubakr Muhammad,et al.  Coverage and hole-detection in sensor networks via homology , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[9]  A. Björner Topological methods , 1996 .

[10]  J. Dugundji An extension of Tietze's theorem. , 1951 .

[11]  Frédéric Chazal,et al.  A Sampling Theory for Compact Sets in Euclidean Space , 2009, Discret. Comput. Geom..

[12]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[13]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[14]  Leonidas J. Guibas,et al.  Manifold Reconstruction in Arbitrary Dimensions Using Witness Complexes , 2007, SCG '07.

[15]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[16]  Frédéric Chazal,et al.  Weak feature size and persistent homology: computing homology of solids in Rn from noisy data samples , 2005, SCG.

[17]  Jeff Erickson,et al.  Greedy optimal homotopy and homology generators , 2005, SODA '05.

[18]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[19]  Vin de Silva A weak definition of Delaunay triangulation , 2003, ArXiv.

[20]  Alan McIntosh,et al.  Hodge Decompositions on Weakly Lipschitz Domains , 2004 .

[21]  K. Borsuk On the imbedding of systems of compacta in simplicial complexes , 1948 .

[22]  Peter Schröder,et al.  An algorithm for the construction of intrinsic delaunay triangulations with applications to digital geometry processing , 2007, Computing.

[23]  Jeff Erickson,et al.  Optimally Cutting a Surface into a Disk , 2002, SCG '02.

[24]  Leonidas J. Guibas,et al.  GLIDER: gradient landmark-based distributed routing for sensor networks , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[25]  Leonidas J. Guibas,et al.  Reconstruction Using Witness Complexes , 2007, SODA '07.

[26]  Joseph S. B. Mitchell,et al.  A new algorithm for shortest paths among obstacles in the plane , 1991, Annals of Mathematics and Artificial Intelligence.

[27]  Daniel Freedman,et al.  Measuring and Localizing Homology Classes , 2008 .

[28]  J. Boissonnat,et al.  Provably good sampling and meshing of Lipschitz surfaces , 2006, SCG '06.

[29]  Tamal K. Dey,et al.  Provable surface reconstruction from noisy samples , 2006, Comput. Geom..

[30]  Leonidas J. Guibas,et al.  Persistence Barcodes for Shapes , 2005, Int. J. Shape Model..

[31]  Tamal K. Dey,et al.  Provable surface reconstruction from noisy samples , 2004, SCG '04.

[32]  R. Ho Algebraic Topology , 2022 .

[33]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[34]  Tao Qian Advances in analysis and geometry - new developments using Clifford algebras , 2004 .

[35]  Herbert Edelsbrunner,et al.  Weak witnesses for Delaunay triangulations of submanifolds , 2007, Symposium on Solid and Physical Modeling.

[36]  Alexander I. Bobenko,et al.  A Discrete Laplace–Beltrami Operator for Simplicial Surfaces , 2005, Discret. Comput. Geom..

[37]  Tamal K. Dey,et al.  Manifold reconstruction from point samples , 2005, SODA '05.

[38]  Leonidas J. Guibas,et al.  Landmark-Based Information Storage and Retrieval in Sensor Networks , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[39]  Hao Zhang,et al.  Delaunay mesh construction , 2007, Symposium on Geometry Processing.

[40]  Peter Schröder,et al.  An algorithm for the construction of intrinsic delaunay triangulations with applications to digital geometry processing , 2006, Computing.

[41]  David Letscher,et al.  Delaunay triangulations and Voronoi diagrams for Riemannian manifolds , 2000, SCG '00.