High-gain observers for non-linear systems

Abstract State estimation for non-linear dynamic systems is discussed. A high-gain injection from the output variables is used to attenuate to any desired degree, the effect of the non-linear terms on the estimation errors, which can be made arbitrarily small, from a particular observable form. Some Liapunov arguments are used to study the stability properties of the resulting error dynamics. It is shown that any completely observable multi-input multi-output non-linear system, not necessarily linear in the input variables, can be transformed, by means of a change of coordinates depending on the input variables, in such an observable form. In particular, the solvability of partial differential equations is not needed for the design of this transformation.

[1]  R. E. Kalman,et al.  On the general theory of control systems , 1959 .

[2]  D. Luenberger Observers for multivariable systems , 1966 .

[3]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[4]  K.S.P. Kumar,et al.  On the observability of nonlinear systems: I , 1971 .

[5]  Darrell Williamson,et al.  Observation of bilinear systems with application to biological control , 1977, Autom..

[6]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[7]  J. W. Humberston Classical mechanics , 1980, Nature.

[8]  J. Gauthier,et al.  Observability for any of a class of nonlinear systems , 1981 .

[9]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[10]  John O'Reilly,et al.  Observers for Linear Systems , 1983 .

[11]  R. Marino High-gain feedback in non-linear control systems† , 1985 .

[12]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[13]  A. Isidori Nonlinear Control Systems: An Introduction , 1986 .

[14]  I. Petersen,et al.  Using observers in the stabilization of uncertain linear systems and in disturbance rejection problems , 1986, 1986 25th IEEE Conference on Decision and Control.

[15]  J. Lévine,et al.  Nonlinear system immersion, observers and finite-dimensional filters , 1986 .

[16]  M. Zeitz The extended Luenberger observer for nonlinear systems , 1987 .

[17]  R. Fenton,et al.  State observers and state-feedback controllers for a class of non-linear systems , 1988 .

[18]  A. Saberi,et al.  Observer Design for Loop Transfer Recovery and for Uncertain Dynamical Systems , 1988, 1988 American Control Conference.

[19]  X. Xia,et al.  Non-linear observer design by observer canonical forms , 1988 .

[20]  M. Zeitz,et al.  Extended Luenberger observer for non-linear multivariable systems , 1988 .

[21]  A. Tornambè,et al.  High-gain observers in the state and estimation of robots having elastic joints , 1989 .

[22]  Antonio Tornambè,et al.  Experimental validation of asymptotic observers for robotic manipulators , 1990, Proceedings., IEEE International Conference on Robotics and Automation.