Adhering interacting cells to two opposing coverslips allows super-resolution imaging of cell-cell interfaces

[1]  Yair Razvag,et al.  InterCells: A Generic Monte-Carlo Simulation of Intercellular Interfaces Captures Nanoscale Patterning at the Immune Synapse , 2018, Front. Immunol..

[2]  V. Calvo,et al.  Imaging Polarized Secretory Traffic at the Immune Synapse in Living T Lymphocytes , 2018, Front. Immunol..

[3]  M. Reches,et al.  Nanoscale kinetic segregation of TCR and CD45 in engaged microvilli facilitates early T cell activation , 2018, Nature Communications.

[4]  S. Weiss,et al.  Synergizing superresolution optical fluctuation imaging with single molecule localization microscopy , 2016, Methods and applications in fluorescence.

[5]  Frederic Bartumeus,et al.  Visualizing dynamic microvillar search and stabilization during ligand detection by T cells , 2017, Science.

[6]  Martin Wiklund,et al.  NK cells converge lytic granules to promote cytotoxicity and prevent bystander killing , 2016, The Journal of cell biology.

[7]  Peter Dedecker,et al.  SOFI Simulation Tool: A Software Package for Simulating and Testing Super-Resolution Optical Fluctuation Imaging , 2016, PloS one.

[8]  Katharina Gaus,et al.  Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination , 2016, Proceedings of the National Academy of Sciences.

[9]  Ricardo Henriques,et al.  Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations , 2016, Nature Communications.

[10]  Eilon Sherman Resolving protein interactions and organization downstream the T cell antigen receptor using single-molecule localization microscopy: a review , 2016 .

[11]  Makoto Arai,et al.  A method for estimating spatial resolution of real image in the Fourier domain , 2016, Journal of microscopy.

[12]  Peilin Zheng,et al.  Imaging of Cell–Cell Communication in a Vertical Orientation Reveals High-Resolution Structure of Immunological Synapse and Novel PD-1 Dynamics , 2015, The Journal of Immunology.

[13]  Michael W. Davidson,et al.  Actin Depletion Initiates Events Leading to Granule Secretion at the Immunological Synapse , 2015, Immunity.

[14]  Eilon Sherman,et al.  Mechanisms of localized activation of the T cell antigen receptor inside clusters. , 2015, Biochimica et biophysica acta.

[15]  G. Danuser,et al.  Mapping the dynamics of force transduction at cell–cell junctions of epithelial clusters , 2014, eLife.

[16]  Sreeurpa Ray,et al.  The Cell: A Molecular Approach , 1996 .

[17]  Wesley R. Legant,et al.  Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution , 2014, Science.

[18]  Arup K Chakraborty,et al.  Insights into the initiation of TCR signaling , 2014, Nature Immunology.

[19]  Guy M. Hagen,et al.  ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging , 2014, Bioinform..

[20]  T. Kapoor,et al.  Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage , 2022 .

[21]  Katharina Gaus,et al.  Super-resolution microscopy of the immunological synapse. , 2013, Current opinion in immunology.

[22]  Sjoerd Stallinga,et al.  Measuring image resolution in optical nanoscopy , 2013, Nature Methods.

[23]  Thomas Frisk,et al.  Live cell imaging in a micro-array of acoustic traps facilitates quantification of natural killer cell heterogeneity. , 2013, Integrative biology : quantitative biosciences from nano to macro.

[24]  V. Barr,et al.  Resolving multi-molecular protein interactions by photoactivated localization microscopy. , 2013, Methods.

[25]  S. Okabe Fluorescence imaging of synapse formation and remodeling. , 2013, Microscopy.

[26]  Suliana Manley,et al.  Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. , 2011, Immunity.

[27]  Mark Bates,et al.  Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging , 2011, Nature Methods.

[28]  S. Wind,et al.  High-resolution imaging of the immunological synapse and T-cell receptor microclustering through microfabricated substrates , 2011, Journal of The Royal Society Interface.

[29]  M. Neil,et al.  Remodelling of Cortical Actin Where Lytic Granules Dock at Natural Killer Cell Immune Synapses Revealed by Super-Resolution Microscopy , 2011, PLoS biology.

[30]  M. Heilemann,et al.  Direct stochastic optical reconstruction microscopy with standard fluorescent probes , 2011, Nature Protocols.

[31]  James A Galbraith,et al.  Super-resolution microscopy at a glance , 2011, Journal of Cell Science.

[32]  Mark A. A. Neil,et al.  Dynamics of Subsynaptic Vesicles and Surface Microclusters at the Immunological Synapse , 2010, Science Signaling.

[33]  Cheng Zhu,et al.  The kinetics of two dimensional TCR and pMHC interactions determine T cell responsiveness , 2010, Nature.

[34]  Evan W. Newell,et al.  TCR–peptide–MHC interactions in situ show accelerated kinetics and increased affinity , 2010, Nature.

[35]  J. .. Woehl,et al.  Realistic modeling of the illumination point spread function in confocal scanning optical microscopy. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[36]  Mark M Davis,et al.  TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation , 2010, Nature Immunology.

[37]  Valarie A. Barr,et al.  Imaging techniques for assaying lymphocyte activation in action , 2010, Nature Reviews Immunology.

[38]  S. Weiss,et al.  Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI) , 2009, Proceedings of the National Academy of Sciences.

[39]  T. Lecuit,et al.  Molecular bases of cell-cell junctions stability and dynamics. , 2009, Cold Spring Harbor perspectives in biology.

[40]  M. Neil,et al.  High-speed high-resolution imaging of intercellular immune synapses using optical tweezers. , 2008, Biophysical journal.

[41]  Michael Loran Dustin,et al.  Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. , 2008, Immunity.

[42]  Mark M Davis,et al.  Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist. , 2007, Immunity.

[43]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[44]  P. Leibson,et al.  Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse. , 2007, Immunity.

[45]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[46]  Rajat Varma,et al.  T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. , 2006, Immunity.

[47]  A. Nehorai,et al.  Deconvolution methods for 3-D fluorescence microscopy images , 2006, IEEE Signal Processing Magazine.

[48]  Yao-Tseng Chen,et al.  NY-ESO-1: review of an immunogenic tumor antigen. , 2006, Advances in cancer research.

[49]  Takashi Saito,et al.  Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76 , 2005, Nature Immunology.

[50]  Rajat Varma,et al.  Actin and agonist MHC–peptide complex–dependent T cell receptor microclusters as scaffolds for signaling , 2005, The Journal of experimental medicine.

[51]  A. Trautmann,et al.  The diversity of immunological synapses. , 2003, Current opinion in immunology.

[52]  V. Barr,et al.  High-Resolution Multicolor Imaging of Dynamic Signaling Complexes in T Cells Stimulated by Planar Substrates , 2003, Science's STKE.

[53]  Heikki Rauvala,et al.  [The dynamic synapse]. , 2003, Duodecim; laaketieteellinen aikakauskirja.

[54]  Jan Cerny,et al.  T-cell engagement of dendritic cells rapidly rearranges MHC class II transport , 2002, Nature.

[55]  D. Sansom,et al.  CD28, CTLA‐4 and their ligands: who does what and to whom? , 2000, Immunology.

[56]  V. Cerundolo,et al.  Identification of NY-ESO-1 Peptide Analogues Capable of Improved Stimulation of Tumor-Reactive CTL1 , 2000, The Journal of Immunology.

[57]  S. Bromley,et al.  The immunological synapse: a molecular machine controlling T cell activation. , 1999, Science.

[58]  Colin R. F. Monks,et al.  Three-dimensional segregation of supramolecular activation clusters in T cells , 1998, Nature.

[59]  K. Takase,et al.  [T cell activation]. , 1995, Ryumachi. [Rheumatism].

[60]  J. Allison,et al.  CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation , 1995, The Journal of experimental medicine.

[61]  Michael L. Dustin,et al.  T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1 , 1989, Nature.

[62]  R. A. Davidoff From Neuron to Brain , 1977, Neurology.