Representations of lattice point sets
暂无分享,去创建一个
Bernd Sturmfels | Peter Kleinschmidt | Robert Weismantel | B. Sturmfels | P. Kleinschmidt | R. Weismantel
[1] Jesús A. De Loera,et al. Integer Polynomial Optimization in Fixed Dimension , 2006, Math. Oper. Res..
[2] Mark Jerrum,et al. Three-Dimensional Statistical Data Security Problems , 1994, SIAM J. Comput..
[3] Leonid Khachiyan,et al. Integer Optimization on Convex Semialgebraic Sets , 2000, Discret. Comput. Geom..
[4] David P. Robbins,et al. On the Volume of the Polytope of Doubly Stochastic Matrices , 1999, Exp. Math..
[5] Johan Håstad,et al. Some optimal inapproximability results , 2001, JACM.
[6] Raymond Hemmecke,et al. On the positive sum property and the computation of Graver test sets , 2003, Math. Program..
[7] Hendrik W. Lenstra,et al. Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..
[8] Rekha R. Thomas. A Geometric Buchberger Algorithm for Integer Programming , 1995, Math. Oper. Res..
[9] Dmitrii V. Pasechnik,et al. On computing Hilbert bases via the Elliot-MacMahon algorithm , 2001, Theor. Comput. Sci..
[10] Andreas S. Schulz,et al. An oracle-polynomial time augmentation algorithm for integer programming , 1999, SODA '99.
[11] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[12] Raymond Hemmecke,et al. Exploiting Symmetries in the Computation of Graver Bases , 2004 .
[13] A. Barvinok,et al. An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .
[14] Raymond Hemmecke,et al. ON THE COMPUTATION OF HILBERT BASES OF CONES , 2002 .
[15] Günter M. Ziegler,et al. A Variant of the Buchberger Algorithm for Integer Programming , 1997, SIAM J. Discret. Math..
[16] V. Klee,et al. FACETS AND VERTICES OF TRANSPORTATION POLYTOPES , 1967 .
[17] Bruno Buchberger,et al. A criterion for detecting unnecessary reductions in the construction of Groebner bases , 1979, EUROSAM.
[18] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[19] Serkan Hosten,et al. Primary Decomposition of Lattice Basis Ideals , 2000, J. Symb. Comput..
[20] Komei Fukuda,et al. Double Description Method Revisited , 1995, Combinatorics and Computer Science.
[21] Jesús A. De Loera,et al. Algebraic unimodular counting , 2001, Math. Program..
[22] Jesús A. De Loera,et al. Markov bases of three-way tables are arbitrarily complicated , 2006, J. Symb. Comput..
[23] Jesús A. De Loera,et al. Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..
[24] L. Cox. On properties of multi-dimensional statistical tables , 2003 .
[25] Anna Maria Bigatti. Computation of Hilbert-Poincaré series , 1997 .
[26] Miklós Ajtai,et al. Generating Hard Instances of Lattice Problems , 1996, Electron. Colloquium Comput. Complex..
[27] P. Diaconis,et al. Algebraic algorithms for sampling from conditional distributions , 1998 .
[28] Kazuo Murota,et al. Optimality criterion for a class of nonlinear integer programs , 2004, Oper. Res. Lett..
[29] Robert G. Jeroslow,et al. Some Basis Theorems for Integral Monoids , 1978, Math. Oper. Res..
[30] Paul C. Pasles. The Lost Squares of Dr. Franklin: Ben Franklin's Missing Squares and the Secret of the Magic Circle , 2001, Am. Math. Mon..
[31] Jesús A. De Loera,et al. Short rational functions for toric algebra and applications , 2004, J. Symb. Comput..
[32] H. P. Williams. A duality theorem for linear congruences , 1984, Discret. Appl. Math..
[33] Matthias Köppe,et al. The integral basis method for integer programming , 2001, Math. Methods Oper. Res..
[34] Laurence A. Wolsey,et al. Decomposition of Integer Programs and of Generating Sets , 1997, ESA.
[35] P. Diaconis,et al. Rectangular Arrays with Fixed Margins , 1995 .
[36] Carl W. Lee,et al. Subdivisions and Triangulationsof Polytopes , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[37] Robert G. Jeroslow,et al. There Cannot be any Algorithm for Integer Programming with Quadratic Constraints , 1973, Oper. Res..
[38] Milan Vlach,et al. Conditions for the existence of solutions of the three-dimensional planar transportation problem , 1986, Discret. Appl. Math..
[39] Evelyne Contejean,et al. Avoiding Slack Variables in the Solving of Linear Diophantine Equations and Inequations , 1997, Theor. Comput. Sci..
[40] David Avis,et al. Reverse Search for Enumeration , 1996, Discret. Appl. Math..
[41] Jeffrey R. Schmidt,et al. The Kostant partition function for simple Lie algebras , 1984 .
[42] Robert Weismantel,et al. Test sets of integer programs , 1998, Math. Methods Oper. Res..
[43] Michel Balinski,et al. Signature classes of transportation polytopes , 1993, Math. Program..
[44] Rekha R. Thomas,et al. Gomory integer programs , 2003, Math. Program..
[45] V. A. Yemelicher,et al. Polytopes, Graphs and Optimisation , 1984 .
[46] R. Stanley. Combinatorics and commutative algebra , 1983 .
[47] H. Paul Williams,et al. Fourier-Motzkin Elimination Extension to Integer Programming Problems , 1976, J. Comb. Theory, Ser. A.
[48] A. Takemura,et al. Minimal Basis for a Connected Markov Chain over 3 × 3 ×K Contingency Tables with Fixed Two‐Dimensional Marginals , 2003 .
[49] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[50] Arjen K. Lenstra,et al. Solving a System of Linear Diophantine Equations with Lower and Upper Bounds on the Variables , 2000, Math. Oper. Res..
[51] Yuri Matiyasevich,et al. Hilbert’s tenth problem , 2019, 100 Years of Math Milestones.
[52] Roberto La Scala,et al. Computing Toric Ideals , 1999, J. Symb. Comput..
[53] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.
[54] Dimitris Bertsimas,et al. Optimization over integers , 2005 .
[55] Tsit Yuen Lam,et al. The algebraic theory of quadratic forms , 1973 .
[56] Martin E. Dyer,et al. On Barvinok's Algorithm for Counting Lattice Points in Fixed Dimension , 1997, Math. Oper. Res..
[57] Alexander I. Barvinok. Computing the Ehrhart quasi-polynomial of a rational simplex , 2006, Math. Comput..
[58] Carlo Traverso,et al. Buchberger Algorithm and Integer Programming , 1991, AAECC.
[59] A. Barvinok,et al. Short rational generating functions for lattice point problems , 2002, math/0211146.
[60] Bernd Sturmfels,et al. Gröbner bases of lattices, corner polyhedra, and integer programming. , 1995 .
[61] Raymond Hemmecke,et al. Computing generating sets of lattice ideals 1 , 2006 .
[62] Herbert S. Wilf,et al. Representations of integers by linear forms in nonnegative integers , 1972 .
[63] Raymond Hemmecke. On the Computation of Hilbert Bases and Extreme Rays of Cones , 2002 .
[64] Matthias Beck,et al. Counting Lattice Points by Means of the Residue Theorem , 2000 .
[65] M. Beck,et al. The number of "magic" squares and hypercubes , 2002, math/0201013.
[66] Abdellah El Moudni,et al. On the analysis of some structural properties of Petri nets , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.
[67] Martin Kreuzer,et al. Efficiently computing minimal sets of critical pairs , 2004, J. Symb. Comput..
[68] B. Buchberger,et al. Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .
[69] Bruno Buchberger,et al. History and Basic Features of the Critical-Pair/Completion Procedure , 1987, J. Symb. Comput..
[70] Uriel G. Rothblum,et al. Convex Combinatorial Optimization , 2003, Discret. Comput. Geom..
[71] CARLO TRAVERSO,et al. Hilbert Functions and the Buchberger Algorithm , 1996, J. Symb. Comput..
[72] J. D. Loera,et al. Polyhedral Cones of Magic Cubes and Squares , 2002, math/0201108.
[73] Michael K. Kinyon,et al. Birkhoff's Theorem for Panstochastic Matrices , 2001, Am. Math. Mon..
[74] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[75] Loïc Pottier. Minimal Solutions of Linear Diophantine Systems: Bounds and Algorithms , 1991, RTA.
[76] Miklós Ajtai,et al. Generating hard instances of lattice problems (extended abstract) , 1996, STOC '96.
[77] Michael Kalkbrener,et al. Converting Bases with the Gröbner Walk , 1997, J. Symb. Comput..
[78] Jesús A. De Loera,et al. All Rational Polytopes Are Transportation Polytopes and All Polytopal Integer Sets Are Contingency Tables , 2004, IPCO.
[79] Arjen K. Lenstra,et al. Hard Equality Constrained Integer Knapsacks , 2002, Math. Oper. Res..
[80] Jesús A. De Loera,et al. The Complexity of Three-Way Statistical Tables , 2002, SIAM J. Comput..
[81] Bernd Sturmfels,et al. Higher Lawrence configurations , 2003, J. Comb. Theory, Ser. A.
[82] M. Brion. Points entiers dans les polyèdres convexes , 1988 .
[83] Teo Mora,et al. The Gröbner Fan of an Ideal , 1988, J. Symb. Comput..
[84] Jack E. Graver,et al. On the foundations of linear and integer linear programming I , 1975, Math. Program..
[85] Evelyne Contejean,et al. An Efficient Incremental Algorithm for Solving Systems of Linear Diophantine Equations , 1994, Inf. Comput..
[86] Rüdiger Gebauer,et al. On an Installation of Buchberger's Algorithm , 1988, J. Symb. Comput..
[87] James P. Jones. Universal Diophantine Equation , 1982, J. Symb. Log..
[88] Anatol N. Kirillov,et al. Ubiquity of Kostka polynomials , 1999 .
[89] Nicholas Eriksson. Toric ideals of homogeneous phylogenetic models , 2004, ISSAC '04.
[90] Richard P. Stanley,et al. Decompositions of Rational Convex Polytopes , 1980 .
[91] Jean B. Lasserre,et al. Integer programming, Barvinok's counting algorithm and Gomory relaxations , 2004, Oper. Res. Lett..
[92] W. Pulleyblank,et al. Total Dual Integrality and Integer Polyhedra , 1979 .
[93] Frits C. R. Spieksma,et al. Approximation Algorithms for Multi-index Transportation Problems with Decomposable Costs , 1997, Discret. Appl. Math..
[94] Komei Fukuda,et al. The generic Gröbner walk , 2007, J. Symb. Comput..
[95] E. Lawler. The Quadratic Assignment Problem , 1963 .
[96] Bernd Sturmfels,et al. GRIN: An Implementation of Gröbner Bases for Integer Programming , 1995, IPCO.
[97] Jesús A. De Loera,et al. FPTAS for mixed-integer polynomial optimization with a fixed number of variables , 2006, SODA '06.
[98] A. Barvinok. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1994 .
[99] S. Lang. Number Theory III , 1991 .