Representations of lattice point sets

[1]  Jesús A. De Loera,et al.  Integer Polynomial Optimization in Fixed Dimension , 2006, Math. Oper. Res..

[2]  Mark Jerrum,et al.  Three-Dimensional Statistical Data Security Problems , 1994, SIAM J. Comput..

[3]  Leonid Khachiyan,et al.  Integer Optimization on Convex Semialgebraic Sets , 2000, Discret. Comput. Geom..

[4]  David P. Robbins,et al.  On the Volume of the Polytope of Doubly Stochastic Matrices , 1999, Exp. Math..

[5]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[6]  Raymond Hemmecke,et al.  On the positive sum property and the computation of Graver test sets , 2003, Math. Program..

[7]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[8]  Rekha R. Thomas A Geometric Buchberger Algorithm for Integer Programming , 1995, Math. Oper. Res..

[9]  Dmitrii V. Pasechnik,et al.  On computing Hilbert bases via the Elliot-MacMahon algorithm , 2001, Theor. Comput. Sci..

[10]  Andreas S. Schulz,et al.  An oracle-polynomial time augmentation algorithm for integer programming , 1999, SODA '99.

[11]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[12]  Raymond Hemmecke,et al.  Exploiting Symmetries in the Computation of Graver Bases , 2004 .

[13]  A. Barvinok,et al.  An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .

[14]  Raymond Hemmecke,et al.  ON THE COMPUTATION OF HILBERT BASES OF CONES , 2002 .

[15]  Günter M. Ziegler,et al.  A Variant of the Buchberger Algorithm for Integer Programming , 1997, SIAM J. Discret. Math..

[16]  V. Klee,et al.  FACETS AND VERTICES OF TRANSPORTATION POLYTOPES , 1967 .

[17]  Bruno Buchberger,et al.  A criterion for detecting unnecessary reductions in the construction of Groebner bases , 1979, EUROSAM.

[18]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[19]  Serkan Hosten,et al.  Primary Decomposition of Lattice Basis Ideals , 2000, J. Symb. Comput..

[20]  Komei Fukuda,et al.  Double Description Method Revisited , 1995, Combinatorics and Computer Science.

[21]  Jesús A. De Loera,et al.  Algebraic unimodular counting , 2001, Math. Program..

[22]  Jesús A. De Loera,et al.  Markov bases of three-way tables are arbitrarily complicated , 2006, J. Symb. Comput..

[23]  Jesús A. De Loera,et al.  Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..

[24]  L. Cox On properties of multi-dimensional statistical tables , 2003 .

[25]  Anna Maria Bigatti Computation of Hilbert-Poincaré series , 1997 .

[26]  Miklós Ajtai,et al.  Generating Hard Instances of Lattice Problems , 1996, Electron. Colloquium Comput. Complex..

[27]  P. Diaconis,et al.  Algebraic algorithms for sampling from conditional distributions , 1998 .

[28]  Kazuo Murota,et al.  Optimality criterion for a class of nonlinear integer programs , 2004, Oper. Res. Lett..

[29]  Robert G. Jeroslow,et al.  Some Basis Theorems for Integral Monoids , 1978, Math. Oper. Res..

[30]  Paul C. Pasles The Lost Squares of Dr. Franklin: Ben Franklin's Missing Squares and the Secret of the Magic Circle , 2001, Am. Math. Mon..

[31]  Jesús A. De Loera,et al.  Short rational functions for toric algebra and applications , 2004, J. Symb. Comput..

[32]  H. P. Williams A duality theorem for linear congruences , 1984, Discret. Appl. Math..

[33]  Matthias Köppe,et al.  The integral basis method for integer programming , 2001, Math. Methods Oper. Res..

[34]  Laurence A. Wolsey,et al.  Decomposition of Integer Programs and of Generating Sets , 1997, ESA.

[35]  P. Diaconis,et al.  Rectangular Arrays with Fixed Margins , 1995 .

[36]  Carl W. Lee,et al.  Subdivisions and Triangulationsof Polytopes , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[37]  Robert G. Jeroslow,et al.  There Cannot be any Algorithm for Integer Programming with Quadratic Constraints , 1973, Oper. Res..

[38]  Milan Vlach,et al.  Conditions for the existence of solutions of the three-dimensional planar transportation problem , 1986, Discret. Appl. Math..

[39]  Evelyne Contejean,et al.  Avoiding Slack Variables in the Solving of Linear Diophantine Equations and Inequations , 1997, Theor. Comput. Sci..

[40]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[41]  Jeffrey R. Schmidt,et al.  The Kostant partition function for simple Lie algebras , 1984 .

[42]  Robert Weismantel,et al.  Test sets of integer programs , 1998, Math. Methods Oper. Res..

[43]  Michel Balinski,et al.  Signature classes of transportation polytopes , 1993, Math. Program..

[44]  Rekha R. Thomas,et al.  Gomory integer programs , 2003, Math. Program..

[45]  V. A. Yemelicher,et al.  Polytopes, Graphs and Optimisation , 1984 .

[46]  R. Stanley Combinatorics and commutative algebra , 1983 .

[47]  H. Paul Williams,et al.  Fourier-Motzkin Elimination Extension to Integer Programming Problems , 1976, J. Comb. Theory, Ser. A.

[48]  A. Takemura,et al.  Minimal Basis for a Connected Markov Chain over 3 × 3 ×K Contingency Tables with Fixed Two‐Dimensional Marginals , 2003 .

[49]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[50]  Arjen K. Lenstra,et al.  Solving a System of Linear Diophantine Equations with Lower and Upper Bounds on the Variables , 2000, Math. Oper. Res..

[51]  Yuri Matiyasevich,et al.  Hilbert’s tenth problem , 2019, 100 Years of Math Milestones.

[52]  Roberto La Scala,et al.  Computing Toric Ideals , 1999, J. Symb. Comput..

[53]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[54]  Dimitris Bertsimas,et al.  Optimization over integers , 2005 .

[55]  Tsit Yuen Lam,et al.  The algebraic theory of quadratic forms , 1973 .

[56]  Martin E. Dyer,et al.  On Barvinok's Algorithm for Counting Lattice Points in Fixed Dimension , 1997, Math. Oper. Res..

[57]  Alexander I. Barvinok Computing the Ehrhart quasi-polynomial of a rational simplex , 2006, Math. Comput..

[58]  Carlo Traverso,et al.  Buchberger Algorithm and Integer Programming , 1991, AAECC.

[59]  A. Barvinok,et al.  Short rational generating functions for lattice point problems , 2002, math/0211146.

[60]  Bernd Sturmfels,et al.  Gröbner bases of lattices, corner polyhedra, and integer programming. , 1995 .

[61]  Raymond Hemmecke,et al.  Computing generating sets of lattice ideals 1 , 2006 .

[62]  Herbert S. Wilf,et al.  Representations of integers by linear forms in nonnegative integers , 1972 .

[63]  Raymond Hemmecke On the Computation of Hilbert Bases and Extreme Rays of Cones , 2002 .

[64]  Matthias Beck,et al.  Counting Lattice Points by Means of the Residue Theorem , 2000 .

[65]  M. Beck,et al.  The number of "magic" squares and hypercubes , 2002, math/0201013.

[66]  Abdellah El Moudni,et al.  On the analysis of some structural properties of Petri nets , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[67]  Martin Kreuzer,et al.  Efficiently computing minimal sets of critical pairs , 2004, J. Symb. Comput..

[68]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[69]  Bruno Buchberger,et al.  History and Basic Features of the Critical-Pair/Completion Procedure , 1987, J. Symb. Comput..

[70]  Uriel G. Rothblum,et al.  Convex Combinatorial Optimization , 2003, Discret. Comput. Geom..

[71]  CARLO TRAVERSO,et al.  Hilbert Functions and the Buchberger Algorithm , 1996, J. Symb. Comput..

[72]  J. D. Loera,et al.  Polyhedral Cones of Magic Cubes and Squares , 2002, math/0201108.

[73]  Michael K. Kinyon,et al.  Birkhoff's Theorem for Panstochastic Matrices , 2001, Am. Math. Mon..

[74]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[75]  Loïc Pottier Minimal Solutions of Linear Diophantine Systems: Bounds and Algorithms , 1991, RTA.

[76]  Miklós Ajtai,et al.  Generating hard instances of lattice problems (extended abstract) , 1996, STOC '96.

[77]  Michael Kalkbrener,et al.  Converting Bases with the Gröbner Walk , 1997, J. Symb. Comput..

[78]  Jesús A. De Loera,et al.  All Rational Polytopes Are Transportation Polytopes and All Polytopal Integer Sets Are Contingency Tables , 2004, IPCO.

[79]  Arjen K. Lenstra,et al.  Hard Equality Constrained Integer Knapsacks , 2002, Math. Oper. Res..

[80]  Jesús A. De Loera,et al.  The Complexity of Three-Way Statistical Tables , 2002, SIAM J. Comput..

[81]  Bernd Sturmfels,et al.  Higher Lawrence configurations , 2003, J. Comb. Theory, Ser. A.

[82]  M. Brion Points entiers dans les polyèdres convexes , 1988 .

[83]  Teo Mora,et al.  The Gröbner Fan of an Ideal , 1988, J. Symb. Comput..

[84]  Jack E. Graver,et al.  On the foundations of linear and integer linear programming I , 1975, Math. Program..

[85]  Evelyne Contejean,et al.  An Efficient Incremental Algorithm for Solving Systems of Linear Diophantine Equations , 1994, Inf. Comput..

[86]  Rüdiger Gebauer,et al.  On an Installation of Buchberger's Algorithm , 1988, J. Symb. Comput..

[87]  James P. Jones Universal Diophantine Equation , 1982, J. Symb. Log..

[88]  Anatol N. Kirillov,et al.  Ubiquity of Kostka polynomials , 1999 .

[89]  Nicholas Eriksson Toric ideals of homogeneous phylogenetic models , 2004, ISSAC '04.

[90]  Richard P. Stanley,et al.  Decompositions of Rational Convex Polytopes , 1980 .

[91]  Jean B. Lasserre,et al.  Integer programming, Barvinok's counting algorithm and Gomory relaxations , 2004, Oper. Res. Lett..

[92]  W. Pulleyblank,et al.  Total Dual Integrality and Integer Polyhedra , 1979 .

[93]  Frits C. R. Spieksma,et al.  Approximation Algorithms for Multi-index Transportation Problems with Decomposable Costs , 1997, Discret. Appl. Math..

[94]  Komei Fukuda,et al.  The generic Gröbner walk , 2007, J. Symb. Comput..

[95]  E. Lawler The Quadratic Assignment Problem , 1963 .

[96]  Bernd Sturmfels,et al.  GRIN: An Implementation of Gröbner Bases for Integer Programming , 1995, IPCO.

[97]  Jesús A. De Loera,et al.  FPTAS for mixed-integer polynomial optimization with a fixed number of variables , 2006, SODA '06.

[98]  A. Barvinok A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1994 .

[99]  S. Lang Number Theory III , 1991 .