Geometric embeddings of metric spaces

[1]  P. Assouad Plongements lipschitziens dans Rn , 2003 .

[2]  M. Gromov,et al.  Embeddings and immersions in Riemannian geometry , 1970 .

[3]  T. Laakso,et al.  Conformal assouad dimension and modulus , 2004 .

[4]  R. Coifman,et al.  Another characterization of BMO , 1980 .

[5]  E. Saksman REMARKS ON THE NONEXISTENCE OF DOUBLING MEASURES , 1999 .

[6]  I. J. Schoenberg,et al.  Fourier integrals and metric geometry , 1941 .

[7]  S. Semmes Good metric spaces without good parameterizations , 1996 .

[8]  Patrice Assouad Remarques sur un article de Israel Aharoni sur les prolongements lipschitziens dansc0 , 1978 .

[9]  Quasiconformal maps of cylindrical domains , 1989 .

[10]  R. Strichartz Sub-Riemannian geometry , 1986 .

[11]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .

[12]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[13]  A. Bellaïche The tangent space in sub-riemannian geometry , 1994 .

[14]  U. Lang,et al.  Bilipschitz Embeddings of Metric Spaces into Space Forms , 2001 .

[15]  Piotr Hajłasz,et al.  @ 1996 Kluwer Academic Publishers. Printed in the Netherlands. Sobolev Spaces on an Arbitrary Metric Space , 1994 .

[16]  T. Laakso Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality , 2000 .

[17]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[18]  C. Kuratowski Quelques problèmes concernant les espaces métriques non-séparables , 1935 .

[19]  A. Aleksandrov,et al.  Intrinsic Geometry of Surfaces , 1967 .

[20]  Kazimierz Kuratowski,et al.  Introduction to Set Theory and Topology , 1964 .

[21]  M. Gromov Carnot-Carathéodory spaces seen from within , 1996 .

[22]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[23]  FRACTURED FRACTALS AND BROKEN DREAMS: SELF‐SIMILAR GEOMETRY THROUGH METRIC AND MEASURE (Oxford Lecture Series in Mathematics and its Applications 7) , 1999 .

[24]  I. J. Schoenberg,et al.  Metric spaces and positive definite functions , 1938 .

[25]  A characterization of potential spaces , 1985 .

[26]  Su Gao,et al.  On the classification of Polish metric spaces up to isometry , 2003 .

[27]  T. Toro Surfaces with generalized second fundamental form in $L^2$ are Lipschitz manifolds , 1994 .

[28]  P. Wojtaszczyk Banach Spaces For Analysts: Preface , 1991 .

[29]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[30]  S. Banach,et al.  Théorie des opérations linéaires , 1932 .

[31]  Jeff Cheeger,et al.  On the structure of spaces with Ricci curvature bounded below. II , 2000 .

[32]  B. Hanson,et al.  Doubling for general sets , 2001 .

[33]  Stephen Semmes,et al.  Fractured fractals and broken dreams : self-similar geometry through metric and measure , 1997 .

[34]  M. Fréchet Les dimensions d'un ensemble abstrait , 1910 .

[35]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[36]  Jeff Cheeger,et al.  Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .

[37]  G. Perelman Spaces with Curvature Bounded Below , 1995 .

[38]  S. Keith A differentiable structure for metric measure spaces , 2004 .

[39]  T. Toro Geometric conditions and existence of bi-Lipschitz parameterizations , 1995 .

[40]  Stephen Semmes,et al.  Some Novel Types of Fractal Geometry , 2001 .

[41]  Pakka Tukia A quasiconformal group not isomorphic to a Möbius group , 1981 .

[42]  J. Luukkainen ASSOUAD DIMENSION: ANTIFRACTAL METRIZATION, POROUS SETS, AND HOMOGENEOUS MEASURES , 1998 .

[43]  S. Semmes,et al.  Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities , 1996 .

[44]  S. Semmes Bilipschitz mappings and strong weights. , 1992 .

[45]  Ultrametric spaces bi-Lipschitz embeddable in $ℝ^n$ , 1996, Fundamenta Mathematicae.

[46]  N. Shanmugalingam Newtonian spaces: An extension of Sobolev spaces to metric measure spaces , 2000 .

[47]  T. Colding Spaces with Ricci curvature bounds. , 1998 .

[48]  P. Pansu Dimension conforme et sphère à l'infini des variétés à courbure négative , 1989 .

[49]  E. Saksman,et al.  Every complete doubling metric space carries a doubling measure , 1998 .

[50]  J. Heinonen,et al.  Quasiconformal maps in metric spaces with controlled geometry , 1998 .

[51]  H. Elton Lacey,et al.  The Isometric Theory of Classical Banach Spaces , 1974 .

[52]  A. Eremenko,et al.  Uniformly hyperbolic surfaces , 2000 .

[53]  S. Semmes BILIPSCHITZ EMBEDDINGS OF METRIC SPACES INTO EUCLIDEAN SPACES , 1999 .

[54]  Pertti Mattila,et al.  Geometry of sets and measures in Euclidean spaces , 1995 .

[55]  SOME NOVEL TYPES OF FRACTAL GEOMETRY (Oxford Mathematical Monographs) By STEPHEN SEMMES: 164 pp., £49.95, ISBN 0-19-850806-9 (Clarendon Press, Oxford, 2001). , 2002 .

[56]  F. Gehring TheLp-integrability of the partial derivatives of A quasiconformal mapping , 1973 .

[57]  S. Konyagin,et al.  On measures with the doubling condition , 1988 .

[58]  L. Evans Measure theory and fine properties of functions , 1992 .

[59]  Urs Lang,et al.  Bi-Lipschitz parameterization of surfaces , 2003 .

[60]  Israel Aharoni,et al.  Every separable metric space is Lipschitz equivalent to a subset ofc0+ , 1974 .

[61]  Porous sets and quasisymmetric maps , 1987 .

[62]  T. Laakso Plane with A∞‐Weighted Metric not Bilipschitz Embeddable to Rn , 2002 .