Geometric embeddings of metric spaces
暂无分享,去创建一个
[1] P. Assouad. Plongements lipschitziens dans Rn , 2003 .
[2] M. Gromov,et al. Embeddings and immersions in Riemannian geometry , 1970 .
[3] T. Laakso,et al. Conformal assouad dimension and modulus , 2004 .
[4] R. Coifman,et al. Another characterization of BMO , 1980 .
[5] E. Saksman. REMARKS ON THE NONEXISTENCE OF DOUBLING MEASURES , 1999 .
[6] I. J. Schoenberg,et al. Fourier integrals and metric geometry , 1941 .
[7] S. Semmes. Good metric spaces without good parameterizations , 1996 .
[8] Patrice Assouad. Remarques sur un article de Israel Aharoni sur les prolongements lipschitziens dansc0 , 1978 .
[9] Quasiconformal maps of cylindrical domains , 1989 .
[10] R. Strichartz. Sub-Riemannian geometry , 1986 .
[11] J. Nash. The imbedding problem for Riemannian manifolds , 1956 .
[12] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .
[13] A. Bellaïche. The tangent space in sub-riemannian geometry , 1994 .
[14] U. Lang,et al. Bilipschitz Embeddings of Metric Spaces into Space Forms , 2001 .
[15] Piotr Hajłasz,et al. @ 1996 Kluwer Academic Publishers. Printed in the Netherlands. Sobolev Spaces on an Arbitrary Metric Space , 1994 .
[16] T. Laakso. Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality , 2000 .
[17] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[18] C. Kuratowski. Quelques problèmes concernant les espaces métriques non-séparables , 1935 .
[19] A. Aleksandrov,et al. Intrinsic Geometry of Surfaces , 1967 .
[20] Kazimierz Kuratowski,et al. Introduction to Set Theory and Topology , 1964 .
[21] M. Gromov. Carnot-Carathéodory spaces seen from within , 1996 .
[22] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[24] I. J. Schoenberg,et al. Metric spaces and positive definite functions , 1938 .
[25] A characterization of potential spaces , 1985 .
[26] Su Gao,et al. On the classification of Polish metric spaces up to isometry , 2003 .
[27] T. Toro. Surfaces with generalized second fundamental form in $L^2$ are Lipschitz manifolds , 1994 .
[28] P. Wojtaszczyk. Banach Spaces For Analysts: Preface , 1991 .
[29] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[30] S. Banach,et al. Théorie des opérations linéaires , 1932 .
[31] Jeff Cheeger,et al. On the structure of spaces with Ricci curvature bounded below. II , 2000 .
[32] B. Hanson,et al. Doubling for general sets , 2001 .
[33] Stephen Semmes,et al. Fractured fractals and broken dreams : self-similar geometry through metric and measure , 1997 .
[34] M. Fréchet. Les dimensions d'un ensemble abstrait , 1910 .
[35] S. Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .
[36] Jeff Cheeger,et al. Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .
[37] G. Perelman. Spaces with Curvature Bounded Below , 1995 .
[38] S. Keith. A differentiable structure for metric measure spaces , 2004 .
[39] T. Toro. Geometric conditions and existence of bi-Lipschitz parameterizations , 1995 .
[40] Stephen Semmes,et al. Some Novel Types of Fractal Geometry , 2001 .
[41] Pakka Tukia. A quasiconformal group not isomorphic to a Möbius group , 1981 .
[42] J. Luukkainen. ASSOUAD DIMENSION: ANTIFRACTAL METRIZATION, POROUS SETS, AND HOMOGENEOUS MEASURES , 1998 .
[43] S. Semmes,et al. Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities , 1996 .
[44] S. Semmes. Bilipschitz mappings and strong weights. , 1992 .
[45] Ultrametric spaces bi-Lipschitz embeddable in $ℝ^n$ , 1996, Fundamenta Mathematicae.
[46] N. Shanmugalingam. Newtonian spaces: An extension of Sobolev spaces to metric measure spaces , 2000 .
[47] T. Colding. Spaces with Ricci curvature bounds. , 1998 .
[48] P. Pansu. Dimension conforme et sphère à l'infini des variétés à courbure négative , 1989 .
[49] E. Saksman,et al. Every complete doubling metric space carries a doubling measure , 1998 .
[50] J. Heinonen,et al. Quasiconformal maps in metric spaces with controlled geometry , 1998 .
[51] H. Elton Lacey,et al. The Isometric Theory of Classical Banach Spaces , 1974 .
[52] A. Eremenko,et al. Uniformly hyperbolic surfaces , 2000 .
[53] S. Semmes. BILIPSCHITZ EMBEDDINGS OF METRIC SPACES INTO EUCLIDEAN SPACES , 1999 .
[54] Pertti Mattila,et al. Geometry of sets and measures in Euclidean spaces , 1995 .
[56] F. Gehring. TheLp-integrability of the partial derivatives of A quasiconformal mapping , 1973 .
[57] S. Konyagin,et al. On measures with the doubling condition , 1988 .
[58] L. Evans. Measure theory and fine properties of functions , 1992 .
[59] Urs Lang,et al. Bi-Lipschitz parameterization of surfaces , 2003 .
[60] Israel Aharoni,et al. Every separable metric space is Lipschitz equivalent to a subset ofc0+ , 1974 .
[61] Porous sets and quasisymmetric maps , 1987 .
[62] T. Laakso. Plane with A∞‐Weighted Metric not Bilipschitz Embeddable to Rn , 2002 .