Spectral Indices Accurately Quantify Changes in Seedling Physiology Following Fire: Towards Mechanistic Assessments of Post-Fire Carbon Cycling

National Aeronautics and Space Administration (NASA) [NNX11AO24G]; National Science Foundation [IOS-1146751, DEB-1251441, IIA-1301792]; National Science Foundation under Hazards SEES award [DMS-1520873]; Idaho Space Grant Consortium

[1]  J. Flexas,et al.  Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. , 2012, Plant science : an international journal of experimental plant biology.

[2]  Carl H. Key,et al.  Landscape Assessment (LA) , 2006 .

[3]  S. Flasse,et al.  Characterizing the spectral-temporal response of burned savannah using in situ spectroradiometry and infrared thermometry , 2000 .

[4]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[5]  Mathias Disney,et al.  Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence? , 2007 .

[6]  Aaron M. Sparks,et al.  Towards a new paradigm in fire severity research using dose–response experiments , 2016 .

[7]  Suming Jin,et al.  Completion of the 2011 National Land Cover Database for the Conterminous United States – Representing a Decade of Land Cover Change Information , 2015 .

[8]  Josep Peñuelas,et al.  Photochemical reflectance index (PRI) and remote sensing of plant CO₂ uptake. , 2011, The New phytologist.

[9]  Mark A. Friedl,et al.  Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: An analysis using a scene simulation model and data from FIFE , 1995 .

[10]  V. Caselles,et al.  Mapping burns and natural reforestation using thematic Mapper data , 1991 .

[11]  C. Justice,et al.  The generation of global fields of terrestrial biophysical parameters from the NDVI , 1994 .

[12]  C. Field,et al.  A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency , 1992 .

[13]  L. Flanagan,et al.  Variation in water potential, hydraulic characteristics and water source use in montane Douglas-fir and lodgepole pine trees in southwestern Alberta and consequences for seasonal changes in photosynthetic capacity. , 2012, Tree physiology.

[14]  Alistair M. S. Smith,et al.  Fire Metrology: Current and Future Directions in Physics-Based Measurements , 2010 .

[15]  K. Moffett,et al.  Remote Sens , 2015 .

[16]  M. M. Schreiber,et al.  Diffuse Reflectance Hypothesis for the Pathway of Solar Radiation Through Leaves1 , 1973 .

[17]  G. Carter,et al.  Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. , 2001, American journal of botany.

[18]  S. A. Lewis,et al.  Remote sensing techniques to assess active fire characteristics and post-fire effects , 2006 .

[19]  S. Ollinger Sources of variability in canopy reflectance and the convergent properties of plants. , 2011, The New phytologist.

[20]  Aaron M. Sparks,et al.  An accuracy assessment of the MTBS burned area product for shrub–steppe fires in the northern Great Basin, United States , 2015 .

[21]  Darrel L. Williams A comparison of spectral reflectance properties at the needle, branch, and canopy level for selected Conifer species , 1991 .

[22]  A. Hudak,et al.  Is proportion burned severely related to daily area burned? , 2014 .

[23]  Narasimhan K. Larkin,et al.  Climate change presents increased potential for very large fires in the contiguous United States , 2015 .

[24]  P. Fulé,et al.  Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data , 2005 .

[25]  M. Tyree,et al.  Moving beyond the cambium necrosis hypothesis of post-fire tree mortality: cavitation and deformation of xylem in forest fires. , 2012, The New phytologist.

[26]  Edward P. Glenn,et al.  Seasonal effects of shading on growth of greenhouse lettuce and spinach , 1984 .

[27]  Robert E. Keane,et al.  Challenges of assessing fire and burn severity using field measures, remote sensing and modelling , 2014 .

[28]  B. Quayle,et al.  A Project for Monitoring Trends in Burn Severity , 2007 .

[29]  J. Keeley Fire intensity, fire severity and burn severity: a brief review and suggested usage , 2009 .

[30]  Sarah A. Lewis,et al.  Assessing burn severity and comparing soil water repellency, Hayman Fire, Colorado , 2006 .

[31]  Aaron M. Sparks,et al.  Quantification of fuel moisture effects on biomass consumed derived from fire radiative energy retrievals , 2013 .

[32]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[33]  Matthew B. Dickinson,et al.  Radiant flux density, energy density and fuel consumption in mixed-oak forest surface fires , 2012 .

[34]  S. Sackett,et al.  Fuel loadings in southwestern ecosystems of the United States , 1996 .

[35]  C. Field,et al.  Relationships Between NDVI, Canopy Structure, and Photosynthesis in Three Californian Vegetation Types , 1995 .

[36]  D. Roy,et al.  Is burn severity related to fire intensity? Observations from landscape scale remote sensing , 2013 .

[37]  Martin J. Wooster,et al.  Testing the potential of multi-spectral remote sensing for retrospectively estimating fire severity in African savannahs , 2005 .

[38]  M. Bartlett Properties of Sufficiency and Statistical Tests , 1992 .

[39]  Y. Kaufman,et al.  Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release , 2005 .

[40]  D. Opitz,et al.  Classifying and mapping wildfire severity : A comparison of methods , 2005 .

[41]  S. A. Lewis,et al.  The Relationship of Multispectral Satellite Imagery to Immediate Fire Effects , 2007 .

[42]  Andrew Kliskey,et al.  Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems , 2014 .

[43]  Roberta E. Martin,et al.  Quantifying forest canopy traits: Imaging spectroscopy versus field survey , 2015 .

[44]  A. Gill,et al.  Learning to coexist with wildfire , 2014, Nature.

[45]  Scott J. Goetz,et al.  The Science of Firescapes: Achieving Fire-Resilient Communities , 2016, Bioscience.

[46]  Alistair M. S. Smith,et al.  Limitations and utilisation of Monitoring Trends in Burn Severity products for assessing wildfire severity in the USA , 2015 .

[47]  E. Menges,et al.  Does Time since Fire Explain Plant Biomass Allocation in the Florida, USA, Scrub Ecosystem? , 2010 .

[48]  Joshua J. Picotte,et al.  Timing Constraints on Remote Sensing of Wildland Fire Burned Area in the Southeastern US , 2011, Remote. Sens..

[49]  Aaron M. Sparks,et al.  Effects of fire radiative energy density dose on Pinus contorta and Larix occidentalis seedling physiology and mortality , 2017 .

[50]  W. Smith,et al.  Interrelationships among light, photosynthesis and nitrogen in the crown of mature Pinus contorta ssp. latifolia. , 1999, Tree physiology.

[51]  Christopher B. Field,et al.  Postfire response of North American boreal forest net primary productivity analyzed with satellite observations , 2003 .

[52]  Matthew B. Dickinson,et al.  Tree Injury and Mortality in Fires: Developing Process-Based Models , 2010 .

[53]  Matthew B. Dickinson,et al.  A Way Forward for Fire-Caused Tree Mortality Prediction: Modeling A Physiological Consequence of Fire , 2010 .

[54]  Jay R. Kost,et al.  Chapter 8 - Mapping existing vegetation composition and structure for the LANDFIRE Prototype Project , 2006 .

[55]  John A Gamon,et al.  Three causes of variation in the photochemical reflectance index (PRI) in evergreen conifers. , 2015, The New phytologist.

[56]  Jay D. Miller,et al.  Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR) , 2007 .

[57]  Carl H. Key,et al.  Ecological and Sampling Constraints on Defining Landscape Fire Severity , 2006 .

[58]  John F. Caratti,et al.  FIREMON: Fire Effects Monitoring and Inventory System , 2012 .

[59]  D. Ward,et al.  Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia , 1996 .

[60]  D. Turner,et al.  The role of remote sensing in process-scaling studies of managed forest ecosystems , 2015 .

[61]  Benjamin S. Hornsby,et al.  Measurements relating fire radiative energy density and surface fuel consumption – RxCADRE 2011 and 2012 , 2016 .

[62]  Matthew G. Rollins,et al.  Mapping Fire Regimes Across Time and Space: Understanding Coarse and Fine-scale Fire Patterns , 2001 .

[63]  Josep Peñuelas,et al.  Visible and near-infrared reflectance techniques for diagnosing plant physiological status , 1998 .

[64]  Alistair M. S. Smith,et al.  Remote sensing for prediction of 1-year post-fire ecosystem condition , 2009 .