Local search heuristics for Quadratic Unconstrained Binary Optimization (QUBO)

We present a family of local-search-based heuristics for Quadratic Unconstrained Binary Optimization (QUBO), all of which start with a (possibly fractional) initial point, sequentially improving its quality by rounding or switching the value of one variable, until arriving to a local optimum. The effects of various parameters on the efficiency of these methods are analyzed through computational experiments carried out on thousands of randomly generated problems having 20 to 2500 variables. Tested on numerous benchmark problems, the performance of the most competitive variant (ACSIOM) was shown to compare favorably with that of other published procedures.

[1]  I. G. Rosenberg Brèves communications. 0-1 optimization and non-linear programming , 1972 .

[2]  Talal M. Alkhamis,et al.  Simulated annealing for the unconstrained quadratic pseudo-Boolean function , 1998, Eur. J. Oper. Res..

[3]  R. McBride,et al.  An Implicit Enumeration Algorithm for Quadratic Integer Programming , 1980 .

[4]  Alain Billionnet,et al.  Minimization of a quadratic pseudo-Boolean function , 1994 .

[5]  Panos M. Pardalos,et al.  The maximum clique problem , 1994, J. Glob. Optim..

[6]  P. Hammer,et al.  Quadratic knapsack problems , 1980 .

[7]  H. D. Ratliff,et al.  Minimum cuts and related problems , 1975, Networks.

[8]  J. Ben Rosen,et al.  A quadratic assignment formulation of the molecular conformation problem , 1994, J. Glob. Optim..

[9]  Spiros G. Papaioannou Optimal Test Generation in Combinational Networks by Pseudo-Boolean Programming , 1977, IEEE Transactions on Computers.

[10]  Martin Grötschel,et al.  An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design , 1988, Oper. Res..

[11]  Peter L. Hammer Pseudo-Boolean remarks on balanced graphs , 1977 .

[12]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[13]  Panos M. Pardalos,et al.  Computational aspects of a branch and bound algorithm for quadratic zero-one programming , 1990, Computing.

[14]  Kengo Katayama,et al.  Performance of simulated annealing-based heuristic for the unconstrained binary quadratic programming problem , 2001, Eur. J. Oper. Res..

[15]  P. Hammer,et al.  Applications of pseudo-Boolean methods to economic problems , 1971 .

[16]  G. Kochenberger,et al.  0-1 Quadratic programming approach for optimum solutions of two scheduling problems , 1994 .

[17]  F. Glover,et al.  Tabu Search with Critical Event Memory: An Enhanced Application for Binary Quadratic Programs , 1999 .

[18]  Abraham Warszawski Pseudo-Boolean Solutions to Multidimensional Location Problems , 1974, Oper. Res..

[19]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[20]  Talal M. Alkhamis,et al.  A comparison between simulated annealing, genetic algorithm and tabu search methods for the unconstrained quadratic Pseudo-Boolean function , 2000 .

[21]  Fred W. Glover,et al.  One-pass heuristics for large-scale unconstrained binary quadratic problems , 2002, Eur. J. Oper. Res..

[22]  Endre Boros,et al.  The max-cut problem and quadratic 0–1 optimization; polyhedral aspects, relaxations and bounds , 1991, Ann. Oper. Res..

[23]  Bahram Alidaee,et al.  A scatter search approach to unconstrained quadratic binary programs , 1999 .

[24]  Michael W. Carter,et al.  The indefinite zero-one quadratic problem , 1984, Discret. Appl. Math..

[25]  Michael Jünger,et al.  Experiments in quadratic 0–1 programming , 1989, Math. Program..

[26]  H. D. Ratliff,et al.  A Cut Approach to the Rectilinear Distance Facility Location Problem , 1978, Oper. Res..

[27]  F. Hillier The evaluation of risky interrelated investments , 1966 .

[28]  Panos M. Pardalos,et al.  Complexity of uniqueness and local search in quadratic 0-1 programming , 1992, Oper. Res. Lett..

[29]  Panos M. Pardalos,et al.  Construction of test problems in quadratic bivalent programming , 1991, TOMS.

[30]  H. Weingartner Capital Budgeting of Interrelated Projects: Survey and Synthesis , 1966 .

[31]  Yves Crama,et al.  Valid inequalities and facets for a hypergraph model of the nonlinear knapsack and the FMS part selection problems , 1995, Ann. Oper. Res..

[32]  Bernd Freisleben,et al.  Greedy and Local Search Heuristics for Unconstrained Binary Quadratic Programming , 2002, J. Heuristics.

[33]  Endre Boros,et al.  Optimal Cell Flipping to Minimize Channel Density in VLSI Design and Pseudo-Boolean Optimization , 1999, Discret. Appl. Math..

[34]  G. Rinaldi,et al.  Exact ground states of Ising spin glasses: New experimental results with a branch-and-cut algorithm , 1995 .

[35]  Panos M. Pardalos,et al.  A branch and bound algorithm for the maximum clique problem , 1992, Comput. Oper. Res..

[36]  Andrea Lodi,et al.  An evolutionary heuristic for quadratic 0-1 programming , 1999, Eur. J. Oper. Res..

[37]  Gintaras Palubeckis,et al.  Multistart Tabu Search Strategies for the Unconstrained Binary Quadratic Optimization Problem , 2004, Ann. Oper. Res..

[38]  Peter L. Hammer,et al.  Boolean Methods in Operations Research and Related Areas , 1968 .

[39]  A. K. Mittal,et al.  Unconstrained quadratic bivalent programming problem , 1984 .

[40]  D. J. Laughhunn Quadratic Binary Programming with Application to Capital-Budgeting Problems , 1970, Oper. Res..

[41]  P. Merz,et al.  Memetic algorithms for the unconstrained binary quadratic programming problem. , 2004, Bio Systems.

[42]  P. Hammer,et al.  Pseudo-Boolean Functions and Their Graphs , 1984 .

[43]  Endre Boros,et al.  Preprocessing of unconstrained quadratic binary optimization , 2006 .

[44]  Wieslaw Kubiak,et al.  New Results on the Completion Time Variance Minimization , 1995, Discret. Appl. Math..

[45]  Endre Boros,et al.  Minimization of Half-Products , 1998, Math. Oper. Res..

[46]  Michael Jünger,et al.  Quadratic 0/1 optimization and a decomposition approach for the placement of electronic circuits , 1994, Math. Program..

[47]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[48]  Pierre Hansen,et al.  Cluster analysis and mathematical programming , 1997, Math. Program..

[49]  C. Helmberg,et al.  Solving quadratic (0,1)-problems by semidefinite programs and cutting planes , 1998 .

[50]  Gintaras Palubeckis A heuristic-based branch and bound algorithm for unconstrained quadratic zero-one programming , 2005, Computing.

[51]  A. Prékopa,et al.  Probabilistic bounds and algorithms for the maximum satisfiability problem , 1990 .

[52]  Kengo Katayama,et al.  Solving Large Binary Quadratic Programming Problems by Effective Genetic Local Search Algorithm , 2000, GECCO.

[53]  Jakob Krarup,et al.  Computer-aided layout design , 1978 .

[54]  John E. Beasley,et al.  Heuristic algorithms for the unconstrained binary quadratic programming problem , 1998 .

[55]  Bahman Kalantari,et al.  An algorithm for quadratic zero-one programs , 1990 .

[56]  R. Ranyard AN ALGORITHM FOR MAXIMUM LIKELIHOOD RANKING AND SLATER'S i FROM PAIRED COMPARISONS , 1976 .

[57]  M. Rao Cluster Analysis and Mathematical Programming , 1971 .

[58]  B. Freisleben,et al.  Genetic algorithms for binary quadratic programming , 1999 .

[59]  F. Glover,et al.  Adaptive Memory Tabu Search for Binary Quadratic Programs , 1998 .