Surface effects in the crystallization process of elastic flexible polymers

Investigating thermodynamic properties of liquid–solid transitions of flexible homopolymers with elastic bonds by means of multicanonical Monte Carlo simulations, we find crystalline conformations that resemble ground-state structures of Lennard-Jones clusters. This allows us to set up a structural classification scheme for finite-length flexible polymers and their freezing mechanism in analogy to atomic cluster formation. Crystals of polymers with ‘magic length’ turn out to be perfectly icosahedral.

[1]  An off-lattice Wang-Landau study of the coil-globule and melting transitions of a flexible homopolymer. , 2006, The Journal of chemical physics.

[2]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[3]  Kurt Binder,et al.  Formation of Block Copolymer Micelles in Solution: A Monte Carlo Study of Chain Length Dependence , 2001 .

[4]  P. Frantsuzov,et al.  Size-temperature phase diagram for small Lennard-Jones clusters. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Jonathan P. K. Doye,et al.  Entropic effects on the structure of Lennard-Jones clusters , 2001 .

[6]  K. Binder,et al.  Unexpectedly normal phase behavior of single homopolymer chains. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[8]  David J. Wales,et al.  Rydberg excitations in rare gas clusters: structure and electronic spectra of Ar n (3< - n< - 25) , 1999 .

[9]  B. Berg,et al.  Multicanonical algorithms for first order phase transitions , 1991 .

[10]  J. King,et al.  Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus , 2006, Nature.

[11]  Globule transitions of a single homopolymer: a Wang-Landau Monte Carlo study. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Rupert G. Miller The jackknife-a review , 1974 .

[13]  T. Fearn The Jackknife , 2000 .

[14]  Wolfhard Janke,et al.  Freezing and collapse of flexible polymers on regular lattices in three dimensions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Jonathan P K Doye,et al.  Structural transitions in the 309-atom magic number Lennard-Jones cluster. , 2006, The Journal of chemical physics.

[16]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[17]  Kurt Binder,et al.  On the first-order collapse transition of a three-dimensional, flexible homopolymer chain model , 2005 .

[18]  J. Northby Structure and binding of Lennard‐Jones clusters: 13≤N≤147 , 1987 .

[19]  M. Karplus,et al.  Equilibrium thermodynamics of homopolymers and clusters: Molecular dynamics and Monte Carlo simulations of systems with square-well interactions , 1997 .

[20]  Wolfhard Janke,et al.  Multicanonical Monte Carlo simulations , 1998 .

[21]  C. Tanford Macromolecules , 1994, Nature.

[22]  K. Pearson,et al.  Biometrika , 1902, The American Naturalist.

[23]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[24]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[25]  J. Doye,et al.  Collapse of Lennard-Jones homopolymers: Size effects and energy landscapes , 2002 .