A review of astrophysics experiments on intense lasers

Astrophysics traditionally has been the domain of large astronomical observatories and theorists' computers, the former producing images from deep space, and the latter constructing intricate models to explain the observations. A component often missing has been the ability to quantitatively test the theories and models in an experimental setting where the initial and final states are well characterized. In a new development, intense lasers are being used to recreate aspects of astrophysical phenomena in the laboratory, allowing the creation of experimental testbeds where theory and modeling can be quantitatively compared with data. We summarize here several areas of astrophysics: supernovae, supernova remnants, gamma-ray bursts, and giant planets. In each of these areas, experiments are under development at intense laser facilities to test and refine our understanding of these phenomena.

[1]  Nakai,et al.  Uniform multimegabar shock waves in solids driven by laser-generated thermal radiation. , 1994, Physical review letters.

[2]  S. Kulkarni,et al.  Discovery of a cool brown dwarf , 1995, Nature.

[3]  Liquid metallic hydrogen and the structure of brown dwarfs and giant planets , 1996, astro-ph/9703007.

[4]  J. Porter,et al.  Laboratory measurement of opacity for stellar envelopes , 1997 .

[5]  S. Woosley,et al.  Theoretical light curve of a Type 2p supernova , 1994 .

[6]  H. Horn Dense astrophysical plasmas , 1991 .

[7]  R. P. Drake,et al.  Similarity Criteria for the Laboratory Simulation of Supernova Hydrodynamics , 1999 .

[8]  Todd Ditmire,et al.  High Intensity Laser Absorption by Gases of Atomic Clusters , 1997 .

[9]  Geoffrey N. Pendleton,et al.  The first BATSE gamma-ray burst catalog , 1994 .

[10]  R. Klein,et al.  On the hydrodynamic interaction of shock waves with interstellar clouds. 1: Nonradiative shocks in small clouds , 1994 .

[11]  Thiell,et al.  Experimental observation of a radiative wave generated in xenon by a laser-driven supercritical shock. , 1986, Physical review letters.

[12]  T. Guillot Interiors of giant planets inside and outside the solar system. , 1999, Science.

[13]  S. Y. Chen,et al.  Observation of the plasma channel dynamics and Coulomb explosion in the interaction of a high-intensity laser pulse with a He gas jet , 1997 .

[14]  Klaus Eidmann,et al.  Opacity Studies of Iron in the 15-30eV Temperature Range , 2000 .

[15]  W. J. Nellis,et al.  Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar) , 1996 .

[16]  Stewart,et al.  Spectroscopic absorption measurements of an iron plasma. , 1992, Physical review letters.

[17]  O. Landen,et al.  Opacity measurements: Extending the range and filling in the gaps , 1997 .

[18]  Rosen,et al.  L-shell absorption spectrum of an open-M-shell germanium plasma: Comparison of experimental data with a detailed configuration-accounting calculation. , 1991, Physical review letters.

[19]  H. A. Bethe,et al.  Supernova mechanisms. [SN 1987a] , 1990 .

[20]  R. P. Drake,et al.  Scaling supernova hydrodynamics to the laboratory , 1998 .

[21]  B. Fryxell,et al.  Instability and clumping in SN 1987A , 1991 .

[22]  W. Nellis Metallic Hydrogen at High Pressures and Temperatures in Jupiter , 1997 .

[23]  D. Palmer,et al.  BATSE observations of gamma-ray burst spectra. I: Spectral diversity , 1993 .

[24]  Oswald Willi,et al.  Characterization of Laser Driven Shocks in Low Density Foam Targets , 1997 .

[25]  Ross,et al.  Temperature measurements and dissociation of shock-compressed liquid deuterium and hydrogen. , 1995, Physical review. B, Condensed matter.

[26]  P. Nugent,et al.  The Hubble constant, supernova light curves and spectra, and radiation transport , 1997 .

[27]  Benuzzi,et al.  Indirect and direct laser driven shock waves and applications to copper equation of state measurements in the 10-40 Mbar pressure range. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  R. P. Drake,et al.  An Evaluation of the Richtmyer-Meshkov Instability in Supernova Remnant Formation , 1998 .

[29]  J. Raymond,et al.  THE BALMER-DOMINATED NORTHEAST LIMB OF THE CYGNUS LOOP SUPERNOVA REMNANT , 1994 .

[30]  R. McCray,et al.  X-Ray and Ultraviolet Line Emission from SNR 1987A , 1997 .

[31]  E. Pier,et al.  Relativistic motion in gamma-ray bursts , 1991 .

[32]  D. Arnett,et al.  Supernovae and Nucleosynthesis , 1996 .

[33]  M. Koenig,et al.  EOS Data Experiments for Plastic Foams Using Smoothed Laser Beams , 2000 .

[34]  R. P. Drake,et al.  Observation of Forward Shocks and Stagnated Ejecta Driven by High-Energy-Density Plasma Flow , 1998 .

[35]  Rogers,et al.  Absorption measurements demonstrating the importance of Delta n=0 transitions in the opacity of iron. , 1992, Physical review letters.

[36]  Jeremiah P. Ostriker,et al.  Unsolved Problems in Astrophysics , 2018 .

[37]  Bossi,et al.  Relative consistency of equations of state by laser driven shock waves. , 1995, Physical review letters.

[38]  Anatoly M. Maksimchuk,et al.  Evolution of a Plasma Waveguide Created during Relativistic-Ponderomotive Self-Channeling of an Inte , 1998 .

[39]  H. Horn,et al.  Convective white-dwarf envelope model grids for H-, He-, and C-rich compositions , 1976 .

[40]  T. C. Sangster,et al.  Hot electron production and heating by hot electrons in fast ignitor research , 1998 .

[41]  Astrophysically relevant experiments on radiation transfer through plasmas with large velocity gradients , 1997 .

[42]  Weber,et al.  Three-dimensional single mode Rayleigh-Taylor experiments on nova. , 1995, Physical review letters.

[43]  Gu,et al.  Forward ion acceleration in thin films driven by a high-intensity laser , 2000, Physical review letters.

[44]  S. Fu,et al.  Laser‐driven shock stability in Al and shock compressibilities of Fe up to 0.8 TPa and SiO2 up to 0.4 TPa , 1995 .

[45]  E. Waxman Gamma-Ray Bursts: Afterglow, High-Energy Cosmic Rays, and Neutrinos , 2000, hep-ph/0004102.

[46]  R. P. Drake,et al.  Development of a Laboratory Environment to Test Modelsof Supernova Remnant Formation , 1998 .

[47]  Jacques Denavit,et al.  Collisionless plasma expansion into a vacuum , 1979 .

[48]  W. Hillebrandt,et al.  The supernova 1987A in the Large Magellanic Cloud , 1989 .

[49]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[50]  S. Blinnikov,et al.  Gamma-ray bursts: When does a blackbody spectrum look non-thermal? , 1999 .

[51]  D. Jones,et al.  Expansion of SN 1993J , 1995, Science.

[52]  B. Fryxell,et al.  Instabilities and clumping in SN 1987A. I, Early evolution in two dimensions , 1991 .

[53]  J. Raymond,et al.  Electron-ion Equilibration in Nonradiative Shocks Associated With SN 1006 , 1996 .

[54]  R. London,et al.  Supernova hydrodynamics experiments on the Nova laser , 1997 .

[55]  Zhou,et al.  Observation of plasma confinement in picosecond laser-plasma interactions. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  R. Petre,et al.  Evidence for shock acceleration of high-energy electrons in the supernova remnant SN1006 , 1995, Nature.

[57]  Nicholas B. Suntzeff,et al.  The distances to five Type II supernovae using the expanding photosphere method, and the value of H(sub 0) , 1994 .

[58]  A Theory of Extrasolar Giant Planets , 1995, astro-ph/9510046.

[59]  J. A. Paisner,et al.  The National Ignition Facility Project , 1994 .

[60]  R. Klein,et al.  Interaction of Supernova Remnants with Interstellar Clouds: From the Nova Laser to the Galaxy , 2000 .

[61]  Michael D. Perry,et al.  Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets , 2000 .

[62]  Rose,et al.  Supersonic propagation of an ionization front in low density foam targets driven by thermal radiation. , 1994, Physical review letters.

[63]  T. S. Perry,et al.  Opacity Measurements in a Hot Dense Medium , 1991, Physical review letters.

[64]  W. Arnett On the early behavior of supernova 1987A , 1988 .

[65]  R. Chevalier Self-similar solutions for the interaction of stellar ejecta with an external medium. , 1982 .

[66]  Remington,et al.  Developing a Radiative Shock Experiment Relevant to Astrophysics , 2000, The Astrophysical journal.

[67]  Justin S. Wark,et al.  Observation of a highly directional γ-ray beam from ultrashort, ultraintense laser pulse interactions with solids , 1999 .

[68]  J. Holtzman,et al.  WFPC2 Studies of the Crab Nebula. III. Magnetic Rayleigh-Taylor Instabilities and the Origin of the Filaments , 1996 .

[69]  Colin J. Horsfield,et al.  Hugoniot EOS measurements at Mbar pressures , 1996 .

[70]  E. Dwek The infrared diagnostic of a dusty plasma with applications to supernova remnants , 1987 .

[71]  Alexander Pukhov,et al.  Relativistic laser-plasma interaction by multi-dimensional particle-in-cell simulations , 1998 .

[72]  B. Remington,et al.  The production of strong blast waves through intense laser irradiation of atomic clusters , 2000 .

[73]  A. Burrows,et al.  Shock breakout in SN 1987A , 1992 .

[74]  R. Gaillard,et al.  LARGE QUASISTATIC MAGNETIC FIELDS GENERATED BY A RELATIVISTICALLY INTENSE LASER PULSE PROPAGATING IN A PREIONIZED PLASMA , 1998 .

[75]  X‐Rays from the Impact of SN 1987A with Its Circumstellar Ring , 1997 .

[76]  J. T. Mendonça,et al.  The physics of collective neutrino-plasma interactions , 1999 .

[77]  U. Hwang,et al.  The X-Ray Iron Emission from Tycho's Supernova Remnant , 1997, astro-ph/9712241.

[78]  Hideaki Takabe,et al.  Modeling astrophysical phenomena in the laboratory with intense lasers , 1999 .

[79]  S. Woosley,et al.  The Great Supernova of 1987 a , 1989 .

[80]  R. P. Drake,et al.  Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena , 2000 .

[81]  Computational Simulation of Plasmas , 1997 .

[82]  G. W. Collins Equation of State measurements of hydrogen isotopes on Nova , 1997 .

[83]  E. Waxman γ-Ray Burst Afterglow: Confirming the Cosmological Fireball Model , 1997, astro-ph/9705229.