Parametrix Approximation of Diffusion Transition Densities
暂无分享,去创建一个
[1] Mark Schroder. Computing the Constant Elasticity of Variance Option Pricing Formula , 1989 .
[2] C. F. Lee,et al. Constant elasticity of variance (CEV) option pricing model: Integration and detailed derivation , 2008, Math. Comput. Simul..
[3] T. McMillen. Simulation and Inference for Stochastic Differential Equations: With R Examples , 2008 .
[4] Yacine Aït-Sahalia. Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed‐form Approximation Approach , 2002 .
[5] Jin E. Zhang. Pricing continuously sampled Asian options with perturbation method , 2003 .
[6] William T. Shaw,et al. Differential equations and asymptotic solutions for arithmetic Asian options: ‘Black–Scholes formulae’ for Asian rate calls , 2008, European Journal of Applied Mathematics.
[7] Rachel Kuske,et al. Optimal exercise boundary for an American put option , 1998 .
[8] V. Isakov,et al. TOPICAL REVIEW: Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets , 1999 .
[9] Sam Howison,et al. Matched Asymptotic Expansions in Financial Engineering , 2005 .
[10] Christian Kahl,et al. Fast strong approximation Monte Carlo schemes for stochastic volatility models , 2006 .
[11] S. Ross,et al. The valuation of options for alternative stochastic processes , 1976 .
[12] P. Duck,et al. SINGULAR PERTURBATION TECHNIQUES APPLIED TO MULTIASSET OPTION PRICING , 2009 .
[13] Ronnie Sircar,et al. Singular Perturbations in Option Pricing , 2003, SIAM J. Appl. Math..
[14] Eugenio Elia Levi,et al. Sulle equazioni lineari totalmente ellittiche alle derivate parziali , 1907 .
[15] S. Menozzi,et al. Explicit parametrix and local limit theorems for some degenerate diffusion processes , 2008, 0802.2229.
[16] F. Vega-Redondo. Complex Social Networks: Econometric Society Monographs , 2007 .
[17] G. Barone-Adesi,et al. Efficient Analytic Approximation of American Option Values , 1987 .
[18] L. Rogers,et al. Complete Models with Stochastic Volatility , 1998 .
[19] Jordan Stoyanov,et al. Simulation and Inference for Stochastic Differential Equations: with R Examples , 2011 .
[20] A. Pascucci,et al. Path dependent volatility , 2008 .
[21] Pricing Derivative Securities , 2000 .
[22] S. Turnbull,et al. A Quick Algorithm for Pricing European Average Options , 1991, Journal of Financial and Quantitative Analysis.
[23] Andrea Pascucci,et al. Calibration of a path-dependent volatility model: Empirical tests , 2009, Comput. Stat. Data Anal..
[24] P. Glasserman,et al. A Continuity Correction for Discrete Barrier Options , 1997 .
[25] R. Elliott,et al. Approximations for the values of american options , 1991 .
[26] JAN OB LÓJ. FINE-TUNE YOUR SMILE CORRECTION TO HAGAN ET AL , 2008 .
[27] S. Basov. Simulation and Inference for Stochastic Differential Equations: With R Examples , 2010 .
[28] M. Broadie,et al. The Valuation of American Options on Multiple Assets , 1997 .
[29] P. Wilmott,et al. An Asymptotic Analysis of an Optimal Hedging Model for Option Pricing with Transaction Costs , 1997 .
[30] P. Foschi,et al. Parametrix approximations for non constant coefficient parabolic PDEs , 2008 .
[31] Andrea Pascucci,et al. On a class of degenerate parabolic equations of Kolmogorov type , 2005 .
[32] P. Hagan,et al. Equivalent Black volatilities , 1999 .
[33] C. J. Harwood. Modelling Financial Derivatives with Mathematica , 2000 .
[34] Martin Widdicks,et al. THE BLACK‐SCHOLES EQUATION REVISITED: ASYMPTOTIC EXPANSIONS AND SINGULAR PERTURBATIONS , 2005 .
[35] G. Papanicolaou,et al. Derivatives in Financial Markets with Stochastic Volatility , 2000 .
[36] P. Hagan,et al. MANAGING SMILE RISK , 2002 .
[37] A. Friedman. Partial Differential Equations of Parabolic Type , 1983 .