Selecting Coherent and Relevant Plots in Large Scatterplot Matrices

The scatterplot matrix (SPLOM) is a well‐established technique to visually explore high‐dimensional data sets. It is characterized by the number of scatterplots (plots) of which it consists of. Unfortunately, this number quadratically grows with the number of the data set’s dimensions. Thus, an SPLOM scales very poorly. Consequently, the usefulness of SPLOMs is restricted to a small number of dimensions. For this, several approaches already exist to explore such ‘small’ SPLOMs. Those approaches address the scalability problem just indirectly and without solving it. Therefore, we introduce a new greedy approach to manage ‘large’ SPLOMs with more than 100 dimensions. We establish a combined visualization and interaction scheme that produces intuitively interpretable SPLOMs by combining known quality measures, a pre‐process reordering and a perception‐based abstraction. With this scheme, the user can interactively find large amounts of relevant plots in large SPLOMs.

[1]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[2]  Cynthia A. Brewer,et al.  ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps , 2003 .

[3]  Georges G. Grinstein,et al.  DNA visual and analytic data mining , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[4]  Matthew O. Ward,et al.  Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering , 2004, IEEE Symposium on Information Visualization.

[5]  Igor Jurisica,et al.  The FlowVizMenu and Parallel Scatterplot Matrix: Hybrid Multidimensional Visualizations for Network Exploration , 2010, IEEE Transactions on Visualization and Computer Graphics.

[6]  John P. Lewis,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2009 Selecting Good Views of High-dimensional Data Using Class Consistency , 2022 .

[7]  R. Grossman,et al.  Graph-theoretic scagnostics , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[8]  S. Johansson,et al.  Interactive Dimensionality Reduction Through User-defined Combinations of Quality Metrics , 2009, IEEE Transactions on Visualization and Computer Graphics.

[9]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[10]  Daniel A. Keim,et al.  Designing Pixel-Oriented Visualization Techniques: Theory and Applications , 2000, IEEE Trans. Vis. Comput. Graph..

[11]  Daniel Asimov,et al.  The grand tour: a tool for viewing multidimensional data , 1985 .

[12]  William S. Cleveland,et al.  Visualizing Data , 1993 .

[13]  Pierre Dragicevic,et al.  Rolling the Dice: Multidimensional Visual Exploration using Scatterplot Matrix Navigation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[14]  J A Solomon,et al.  Texture interactions determine perceived contrast , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Peter Burgh Peripheral Viewing and Simultaneous Contrast , 1964 .

[16]  Peter L. Brooks,et al.  Visualizing data , 1997 .

[17]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[18]  Giuseppe Santucci,et al.  See What You Know: Analyzing Data Distribution to Improve Density Map Visualization , 2007, EuroVis.

[19]  Colleen M. Zeitz,et al.  Some concrete advantages of abstraction: how experts' representations facilitate reasoning , 1997 .

[20]  Ben Shneiderman,et al.  A Rank-by-Feature Framework for Interactive Exploration of Multidimensional Data , 2005, Inf. Vis..

[21]  John W. Tukey,et al.  PRIM-9: An Interactive Multi-dimensional Data Display and Analysis System , 1975, ACM Pacific.

[22]  Daniel A. Keim,et al.  Visual quality metrics and human perception: an initial study on 2D projections of large multidimensional data , 2010, AVI.

[23]  Daniel B. Carr,et al.  Scatterplot matrix techniques for large N , 1986 .

[24]  Daniel A. Keim,et al.  Pixnostics: Towards Measuring the Value of Visualization , 2006, 2006 IEEE Symposium On Visual Analytics Science And Technology.

[25]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[26]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[27]  Marcus A. Magnor,et al.  Improving the visual analysis of high-dimensional datasets using quality measures , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[28]  Cynthia A. Brewer,et al.  ColorBrewer in Print: A Catalog of Color Schemes for Maps , 2003 .

[29]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[30]  Matthew O. Ward,et al.  Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[31]  Marcus A. Magnor,et al.  Combining automated analysis and visualization techniques for effective exploration of high-dimensional data , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[32]  Andreas Buja,et al.  Grand tour and projection pursuit , 1995 .

[33]  Christopher G. Healey,et al.  Choosing effective colours for data visualization , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[34]  Marcus A. Magnor,et al.  Quality-Based Visualization Matrices , 2009, VMV.

[35]  Georgia Albuquerque,et al.  Data Driven Color Mapping , 2011, EuroVA@EuroVis.

[36]  J. Ridley Studies of Interference in Serial Verbal Reactions , 2001 .

[37]  Stuart Anstis,et al.  Interactions between simultaneous contrast and coloured afterimages , 1978, Vision Research.