Syntactic Complexity of Ultimately Periodic Sets of Integers and Application to a Decision Procedure
暂无分享,去创建一个
[1] Tero Harju,et al. On the Periodicity of Morphisms on Free Monoids , 1986, RAIRO Theor. Informatics Appl..
[2] Janusz A. Brzozowski,et al. Syntactic Complexity of Ideal and Closed Languages , 2010, Developments in Language Theory.
[3] Micha A. Perles,et al. The Theory of Definite Automata , 1963, IEEE Trans. Electron. Comput..
[4] Michel Rigo,et al. Decidability questions related to abstract numeration systems , 2004, Discret. Math..
[5] Michel Rigo,et al. Syntactic Complexity of Ultimately Periodic Sets of Integers , 2011, LATA.
[6] C. Michaux,et al. LOGIC AND p-RECOGNIZABLE SETS OF INTEGERS , 1994 .
[7] Jean-Éric Pin,et al. Syntactic Semigroups , 1997, Handbook of Formal Languages.
[8] Michel Rigo,et al. A Decision Problem for Ultimately Periodic Sets in Nonstandard Numeration Systems , 2009, Int. J. Algebra Comput..
[9] Jeffrey Shallit,et al. Periodicity, repetitions, and orbits of an automatic sequence , 2008, Theor. Comput. Sci..
[10] Ivan Mitrofanov,et al. A proof for the decidability of HD0L ultimate periodicity , 2011, 1110.4780.
[11] Boris Alexeev. Minimal DFA for testing divisibility , 2004, J. Comput. Syst. Sci..
[12] Emilie Charlier,et al. The Minimal Automaton Recognizing mN in a Linear Numeration System , 2011, Integers.
[13] Juha Honkala. A Decision Method for The Recognizability of Sets Defined by Number Systems , 1986, RAIRO Theor. Informatics Appl..
[14] Tero Harju,et al. A new proof for the decidability of D0L ultimate periodicity , 2011, WORDS.
[15] J. Brzozowski. Canonical regular expressions and minimal state graphs for definite events , 1962 .
[16] Fabien Durand,et al. HD0L-$ω$-equivalence and periodicity problems in the primitive case (to the memory of G. Rauzy) , 2011, ArXiv.
[17] Fabien Durand,et al. Decidability of the HD0L ultimate periodicity problem , 2011, RAIRO Theor. Informatics Appl..