Syntactic Complexity of Ultimately Periodic Sets of Integers and Application to a Decision Procedure

We compute the cardinality of the syntactic monoid of the language 0a repb(m$\mathbb{N}$) made of base b expansions of the multiples of the integer m. We also give lower bounds for the syntactic complexity of any (ultimately) periodic set of integers written in base b. We apply our results to a well studied problem: decide whether or not a b-recognizable set of integers is ultimately periodic.

[1]  Tero Harju,et al.  On the Periodicity of Morphisms on Free Monoids , 1986, RAIRO Theor. Informatics Appl..

[2]  Janusz A. Brzozowski,et al.  Syntactic Complexity of Ideal and Closed Languages , 2010, Developments in Language Theory.

[3]  Micha A. Perles,et al.  The Theory of Definite Automata , 1963, IEEE Trans. Electron. Comput..

[4]  Michel Rigo,et al.  Decidability questions related to abstract numeration systems , 2004, Discret. Math..

[5]  Michel Rigo,et al.  Syntactic Complexity of Ultimately Periodic Sets of Integers , 2011, LATA.

[6]  C. Michaux,et al.  LOGIC AND p-RECOGNIZABLE SETS OF INTEGERS , 1994 .

[7]  Jean-Éric Pin,et al.  Syntactic Semigroups , 1997, Handbook of Formal Languages.

[8]  Michel Rigo,et al.  A Decision Problem for Ultimately Periodic Sets in Nonstandard Numeration Systems , 2009, Int. J. Algebra Comput..

[9]  Jeffrey Shallit,et al.  Periodicity, repetitions, and orbits of an automatic sequence , 2008, Theor. Comput. Sci..

[10]  Ivan Mitrofanov,et al.  A proof for the decidability of HD0L ultimate periodicity , 2011, 1110.4780.

[11]  Boris Alexeev Minimal DFA for testing divisibility , 2004, J. Comput. Syst. Sci..

[12]  Emilie Charlier,et al.  The Minimal Automaton Recognizing mN in a Linear Numeration System , 2011, Integers.

[13]  Juha Honkala A Decision Method for The Recognizability of Sets Defined by Number Systems , 1986, RAIRO Theor. Informatics Appl..

[14]  Tero Harju,et al.  A new proof for the decidability of D0L ultimate periodicity , 2011, WORDS.

[15]  J. Brzozowski Canonical regular expressions and minimal state graphs for definite events , 1962 .

[16]  Fabien Durand,et al.  HD0L-$ω$-equivalence and periodicity problems in the primitive case (to the memory of G. Rauzy) , 2011, ArXiv.

[17]  Fabien Durand,et al.  Decidability of the HD0L ultimate periodicity problem , 2011, RAIRO Theor. Informatics Appl..