When Does Eddy Viscosity Damp Subfilter Scales Sufficiently?

Large eddy simulation (LES) seeks to predict the dynamics of spatially filtered turbulent flows. The very essence is that the LES-solution contains only scales of size ≥Δ, where Δ denotes some user-chosen length scale. This property enables us to perform a LES when it is not feasible to compute the full, turbulent solution of the Navier-Stokes equations. Therefore, in case the large eddy simulation is based on an eddy viscosity model we determine the eddy viscosity such that any scales of size <Δ are dynamically insignificant. In this paper, we address the following two questions: how much eddy diffusion is needed to (a) balance the production of scales of size smaller than Δ; and (b) damp any disturbances having a scale of size smaller than Δ initially. From this we deduce that the eddy viscosity νe has to depend on the invariants $q = \frac{1}{2}\mathrm{tr}(S^{2})$ and $r= -\frac{1}{3}\mathrm{tr}(S^{3})$ of the (filtered) strain rate tensor S. The simplest model is then given by $\nu_{e} = \frac{3}{2}(\Delta/\pi)^{2} |r|/q$. This model is successfully tested for a turbulent channel flow (Re τ=590).

[1]  P. Saugat Large eddy simulation for incompressible flows , 2001 .

[2]  Dongho Chae On the Spectral Dynamics of the Deformation Tensor and New A Priori Estimates for the 3D Euler Equations , 2006 .

[3]  Bernardus J. Geurts,et al.  Turbulent flow computation , 2004 .

[4]  J. Ferziger,et al.  Evaluation of subgrid-scale models using an accurately simulated turbulent flow , 1979, Journal of Fluid Mechanics.

[5]  Jean-Luc Guermond,et al.  Mathematical Perspectives on Large Eddy Simulation Models for Turbulent Flows , 2004 .

[6]  L. Berselli,et al.  Mathematics of Large Eddy Simulation of Turbulent Flows , 2005 .

[7]  Hervé Jeanmart,et al.  On the modelling of the subgrid-scale and filtered-scale stress tensors in large-eddy simulation , 2001, Journal of Fluid Mechanics.

[8]  S. Corrsin,et al.  Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence , 1971, Journal of Fluid Mechanics.

[9]  Meinhard E. Mayer,et al.  Navier-Stokes Equations and Turbulence , 2008 .

[10]  Hervé Jeanmart,et al.  Explicit-filtering large-eddy simulation using the tensor-diffusivity model supplemented by a dynami , 2001 .

[11]  K. Lilly The representation of small-scale turbulence in numerical simulation experiments , 1966 .

[12]  R. Courant,et al.  Methods of Mathematical Physics, Vol. I , 1954 .

[13]  Andrew J. Majda,et al.  Vorticity, Turbulence, and Acoustics in Fluid Flow , 1991, SIAM Rev..

[14]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[15]  Roel Verstappen On restraining the production of small scales of motion in a turbulent channel flow , 2008 .

[16]  Darryl D. Holm,et al.  Alpha-modeling Strategy for LES of Turbulent Mixing , 2002, nlin/0202012.

[17]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[18]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[19]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[20]  Hans Kuerten,et al.  Large-eddy simulation of the temporal mixing layer using the Clark model , 1996 .

[21]  Roger Temam,et al.  Navier-Stokes Equations and Turbulence by C. Foias , 2001 .

[22]  Parviz Moin,et al.  A dynamic eddy-viscosity model based on the invariants of the rate-of-strain , 2011 .

[23]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[24]  A. Veldman,et al.  Symmetry-preserving discretization of turbulent flow , 2003 .

[25]  A. W. Vreman An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications , 2004 .

[26]  C. Meneveau,et al.  The dynamic Smagorinsky model and scale-dependent coefficients in the viscous range of turbulence , 1997 .