OPA1: 516 unique variants and 831 patients registered in an updated centralized Variome database

BackgroundThe dysfunction of OPA1, a dynamin GTPase involved in mitochondrial fusion, is responsible for a large spectrum of neurological disorders, each of which includes optic neuropathy. The database dedicated to OPA1 (https://www.lovd.nl/OPA1), created in 2005, has now evolved towards a centralized and more reliable database using the Global Variome shared Leiden Open-source Variation Database (LOVD) installation.ResultsThe updated OPA1 database, which registers all the patients from our center as well as those reported in the literature, now covers a total of 831 patients: 697 with isolated dominant optic atrophy (DOA), 47 with DOA “plus”, and 83 with asymptomatic or unclassified DOA. It comprises 516 unique OPA1 variants, of which more than 80% (414) are considered pathogenic. Full clinical data for 118 patients are documented using the Human Phenotype Ontology, a standard vocabulary for referencing phenotypic abnormalities. Contributors may now make online submissions of phenotypes related to OPA1 mutations, giving clinical and molecular descriptions together with detailed ophthalmological and neurological data, according to an international thesaurus.ConclusionsThe evolution of the OPA1 database towards the LOVD, using unified nomenclature, should ensure its interoperability with other databases and prove useful for molecular diagnoses based on gene-panel sequencing, large-scale mutation statistics, and genotype-phenotype correlations.

[1]  R. Schwarzenbacher,et al.  OPA1 mutations induce mitochondrial DNA instability and optic atrophy 'plus' phenotypes. , 2008, Brain : a journal of neurology.

[2]  B. Lorenz,et al.  Mutation spectrum and splicing variants in the OPA1 gene , 2001, Human Genetics.

[3]  Johan T den Dunnen,et al.  Improving sequence variant descriptions in mutation databases and literature using the Mutalyzer sequence variation nomenclature checker , 2008, Human mutation.

[4]  Majida Charif,et al.  A novel mutation of AFG3L2 might cause dominant optic atrophy in patients with mild intellectual disability , 2015, Front. Genet..

[5]  Sue Povey,et al.  The Human Variome Project , 2008, Science.

[6]  D. Milea,et al.  Improved Locus‐Specific Database for OPA1 Mutations Allows Inclusion of Advanced Clinical Data , 2015, Human mutation.

[7]  M. Pericak-Vance,et al.  Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A , 2004, Nature Genetics.

[8]  Harald Barsnes,et al.  OLS Client and OLS Dialog: Open Source Tools to Annotate Public Omics Datasets , 2017, Proteomics.

[9]  D. Valle,et al.  Online Mendelian Inheritance In Man (OMIM) , 2000, Human mutation.

[10]  David A Mackey,et al.  Autosomal dominant optic atrophy: penetrance and expressivity in patients with OPA1 mutations. , 2007, American journal of ophthalmology.

[11]  N. Wood,et al.  Nonsyndromic Parkinson disease in a family with autosomal dominant optic atrophy due to OPA1 mutations , 2017, Neurology: Genetics.

[12]  M. Zeviani,et al.  Syndromic parkinsonism and dementia associated with OPA 1 missense mutations , 2015, Annals of neurology.

[13]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[14]  P. Kjer Infantile optic atrophy with dominant mode of inheritance: a clinical and genetic study of 19 Danish families. , 1959, Acta ophthalmologica. Supplementum.

[15]  N. Boddaert,et al.  Mutations in DNM1L, as in OPA1, result indominant optic atrophy despite opposite effectson mitochondrial fusion and fission , 2017, Brain : a journal of neurology.

[16]  G. Sanborn,et al.  Dominant optic atrophy, deafness, ptosis, ophthalmoplegia, dystaxia, and myopathy. A new syndrome. , 1984, Ophthalmology.

[17]  Jeroen F. J. Laros,et al.  LOVD v.2.0: the next generation in gene variant databases , 2011, Human mutation.

[18]  V. Desquiret-Dumas,et al.  Early-onset Behr syndrome due to compound heterozygous mutations in OPA1. , 2014, Brain : a journal of neurology.

[19]  Elspeth A. Bruford,et al.  Genenames.org: the HGNC resources in 2015 , 2014, Nucleic Acids Res..

[20]  F. Meire,et al.  Dominant optic nerve atrophy with progressive hearing loss and chronic progressive external ophthalmoplegia (CPEO). , 1985, Ophthalmic paediatrics and genetics.

[21]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[22]  A. Brookes,et al.  Human genotype–phenotype databases: aims, challenges and opportunities , 2015, Nature Reviews Genetics.

[23]  Laura M. Jackson,et al.  Finding Our Way through Phenotypes , 2015, PLoS biology.

[24]  G. Lenaers,et al.  OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease. , 2002, Molecular genetics and metabolism.

[25]  C. Hoyt,et al.  Autosomal dominant optic atrophy. A spectrum of disability. , 1980, Ophthalmology.

[26]  T. Rosenberg,et al.  Dominant optic atrophy (OPA1) mapped to chromosome 3q region. I. Linkage analysis. , 1994, Human molecular genetics.

[27]  D. Bonneau,et al.  MULTIPLE SCLEROSIS–LIKE DISORDER IN OPA1-RELATED AUTOSOMAL DOMINANT OPTIC ATROPHY , 2008, Neurology.

[28]  Raymond Dalgleish,et al.  HGVS Recommendations for the Description of Sequence Variants: 2016 Update , 2016, Human mutation.

[29]  D. Milea,et al.  Molecular screening of 980 cases of suspected hereditary optic neuropathy with a report on 77 novel OPA1 mutations , 2009, Human mutation.

[30]  Elspeth A. Bruford,et al.  Genenames.org: the HGNC resources in 2013 , 2012, Nucleic Acids Res..

[31]  M. Larsen,et al.  Sensorineural hearing loss in OPA1-linked disorders. , 2013, Brain : a journal of neurology.

[32]  R. Lewis,et al.  Early-onset severe neuromuscular phenotype associated with compound heterozygosity for OPA1 mutations. , 2011, Molecular genetics and metabolism.

[33]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[34]  Robert W. Taylor,et al.  Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous OPA1 mutation , 2015, Journal of Medical Genetics.

[35]  E. Bertini,et al.  'Behr syndrome' with OPA1 compound heterozygote mutations. , 2015, Brain : a journal of neurology.

[36]  Leslie G Biesecker,et al.  Phenotype matters , 2004, Nature Genetics.

[37]  Alan F. Scott,et al.  Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders , 2002, Nucleic Acids Res..

[38]  Yu Zhao,et al.  Dominant optic atrophy, sensorineural hearing loss, ptosis, and ophthalmoplegia: a syndrome caused by a missense mutation in OPA1. , 2004, American journal of ophthalmology.

[39]  P. Amati‐Bonneau,et al.  eOPA1: An online database for OPA1 mutations , 2005, Human mutation.

[40]  J. Pouget,et al.  The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy 'plus' phenotype. , 2012, Brain : a journal of neurology.

[41]  Rachel G Liao,et al.  A federated ecosystem for sharing genomic, clinical data , 2016, Science.

[42]  D. Turnbull,et al.  Multi-system neurological disease is common in patients with OPA1 mutations , 2010, Brain : a journal of neurology.

[43]  T. Rosenberg,et al.  Dominant optic atrophy mapped to chromosome 3q region. II. Clinical and epidemiological aspects. , 2009, Acta ophthalmologica Scandinavica.

[44]  Andrew J. Hill,et al.  Analysis of protein-coding genetic variation in 60,706 humans , 2015, bioRxiv.

[45]  U. Inserm OPA1 R445H mutation in optic atrophy associated with sensorineural deafness , 2006 .

[46]  廖述朗,et al.  Autosomal Dominant Optic Atrophy , 1993, Definitions.

[47]  A. Munnich,et al.  Mutations in the tricarboxylic acid cycle enzyme, aconitase 2, cause either isolated or syndromic optic neuropathy with encephalopathy and cerebellar atrophy , 2014, Journal of Medical Genetics.

[48]  M. Larsen,et al.  Sensorineural hearing loss in OPA1-linked disorders. , 2013, Brain : a journal of neurology.

[49]  V. Mils,et al.  Mitochondrial dynamics and disease, OPA1. , 2006, Biochimica et biophysica acta.

[50]  Peter N. Robinson,et al.  Deep phenotyping for precision medicine , 2012, Human mutation.

[51]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[52]  M. Watson,et al.  The Human Variome Project , 2016, Human mutation.

[53]  Robert W. Taylor,et al.  Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. , 2008, Brain : a journal of neurology.

[54]  D. Milea,et al.  Dominant optic atrophy , 2012, Orphanet Journal of Rare Diseases.

[55]  Mauno Vihinen,et al.  Guidelines for establishing locus specific databases , 2012, Human mutation.

[56]  D. Milea,et al.  OPA1-related disorders: Diversity of clinical expression, modes of inheritance and pathophysiology , 2016, Neurobiology of Disease.

[57]  Robert W. Taylor,et al.  The prevalence and natural history of dominant optic atrophy due to OPA1 mutations. , 2010, Ophthalmology.

[58]  B. Lorenz,et al.  Recessive Mutations in RTN4IP1 Cause Isolated and Syndromic Optic Neuropathies. , 2015, American Journal of Human Genetics.

[59]  L. Pasquier,et al.  The association of autosomal dominant optic atrophy and moderate deafness may be due to the R445H mutation in the OPA1 gene. , 2003, American journal of ophthalmology.

[60]  S. Bhattacharya,et al.  OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28 , 2000, Nature Genetics.

[61]  Mauno Vihinen,et al.  Standard development at the Human Variome Project , 2015, Database J. Biol. Databases Curation.

[62]  G. Lenaers,et al.  The human dynamin‐related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter‐membrane space , 2002, FEBS letters.

[63]  E. Zrenner,et al.  OPA1 mutations in patients with autosomal dominant optic atrophy and evidence for semi-dominant inheritance. , 2001, Human molecular genetics.

[64]  Tudor Groza,et al.  The Human Phenotype Ontology in 2017 , 2016, Nucleic Acids Res..

[65]  J. Grosgeorge,et al.  Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy , 2000, Nature Genetics.