An entropy approach for the optimization of cross-section spacing for river modelling

Abstract An accurate definition of river geometry is essential to implement one-dimensional (1D) hydraulic models and, in particular, appropriate spacing between cross-sections is key for capturing a river’s hydraulic behaviour. This work explores the potential of an entropy-based approach, as a complementary method to existing guidelines, to determine the optimal number of cross-sections to support 1D hydraulic modelling. To this end, given a redundant collection of existing cross-sections, a location subset is selected minimizing total correlation (as a measure of redundancy) and maximizing joint entropy (as a measure of information content). The problem is posed as a multi-objective optimization problem and solved using a genetic algorithm: the Non-dominated Sorting Genetic Algorithm (NSGA)-II. The proposed method is applied to a river reach of the Po River (Italy) and compared to standard guidelines for 1D hydraulic modelling. Cross-sections selected through the proposed methodology were found to provide an accurate description of the flood water profile, while optimizing computational efficiency. Editor D. Koutsoyiannis Citation Ridolfi, E., Alfonso, L., Di Baldassarre, G., Dottori, F., Russo, F., and Napolitano, F., 2013. An entropy approach for the optimization of cross-section spacing for river modelling. Hydrological Sciences Journal, 59 (1), 126–137.

[1]  Demetris Koutsoyiannis,et al.  Uncertainty, entropy, scaling and hydrological stochastics. 2. Time dependence of hydrological processes and time scaling / Incertitude, entropie, effet d'échelle et propriétés stochastiques hydrologiques. 2. Dépendance temporelle des processus hydrologiques et échelle temporelle , 2005 .

[2]  Attilio Castellarin,et al.  Probability-weighted hazard maps for comparing different flood risk management strategies: a case study , 2009 .

[3]  Francesco Laio,et al.  Design flood estimation using model selection criteria , 2009 .

[4]  Matthew S. Horritt,et al.  A methodology for the validation of uncertain flood inundation models , 2006 .

[5]  H. McMillanb,et al.  The Use of Entropy as a Model Diagnostic in Rainfall-Runoff Modelling , 2010 .

[6]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[7]  J. Amorocho,et al.  Entropy in the assessment of uncertainty in hydrologic systems and models , 1973 .

[8]  Demetris Koutsoyiannis,et al.  Entropy based derivation of probability distributions: A case study to daily rainfall , 2012 .

[9]  Tahir Husain,et al.  HYDROLOGIC UNCERTAINTY MEASURE AND NETWORK DESIGN1 , 1989 .

[10]  Dragan Savic,et al.  Evolutionary multi-objective optimization of the design and operation of water distribution network: total cost vs. reliability vs. water quality , 2006 .

[11]  Zoran Kapelan,et al.  Probabilistic building block identification for the optimal design and rehabilitation of water distribution systems , 2009 .

[12]  Attilio Castellarin,et al.  Isla Hispaniola: A trans-boundary flood risk mitigation plan , 2009 .

[13]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[14]  A. Lobbrecht,et al.  Optimization of water level monitoring network in polder systems using information theory , 2010 .

[15]  Keith Beven,et al.  Influence of uncertain boundary conditions and model structure on flood inundation predictions. , 2006 .

[16]  P. Bates,et al.  Evaluation of 1D and 2D numerical models for predicting river flood inundation , 2002 .

[17]  Michael Satosi Watanabe,et al.  Information Theoretical Analysis of Multivariate Correlation , 1960, IBM J. Res. Dev..

[18]  Vijay P. Singh,et al.  Evaluation of rainfall networks using entropy: I. Theoretical development , 1992 .

[19]  S. Weijs,et al.  Accounting for Observational Uncertainty in Forecast Verification: An Information-Theoretical View on Forecasts, Observations, and Truth , 2011 .

[20]  V. Singh,et al.  The entropy theory as a tool for modelling and decision-making in environmental and water resources. , 2000 .

[21]  Demetris Koutsoyiannis,et al.  Uncertainty, entropy, scaling and hydrological stochastics. 1. Marginal distributional properties of hydrological processes and state scaling / Incertitude, entropie, effet d'échelle et propriétés stochastiques hydrologiques. 1. Propriétés distributionnelles marginales des processus hydrologiques et , 2005 .

[22]  K. Knuth Optimal Data-Based Binning for Histograms , 2006, physics/0605197.

[23]  Vijay P. Singh,et al.  Assessment of spatial structure of groundwater quality variables based on the entropy theory , 2003 .

[24]  A. Lobbrecht,et al.  Information theory–based approach for location of monitoring water level gauges in polders , 2010 .

[25]  Alexander Kraskov,et al.  Published under the scientific responsability of the EUROPEAN PHYSICAL SOCIETY Incorporating , 2002 .

[26]  Alexander Kraskov,et al.  Hierarchical Clustering Based on Mutual Information , 2003, ArXiv.

[27]  Chulsang Yoo,et al.  Evaluation of Rain Gauge Network Using Entropy Theory: Comparison of Mixed and Continuous Distribution Function Applications , 2008 .

[28]  V. Singh,et al.  THE USE OF ENTROPY IN HYDROLOGY AND WATER RESOURCES , 1997 .

[29]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[30]  Matthew D. Wilson,et al.  Improved simulation of flood flows using storage cell models , 2006 .

[31]  Paul D. Bates,et al.  Modelling the hydraulics of the Carlisle 2005 flood event , 2010 .

[32]  Vijay P. Singh,et al.  Characterizing the spatial variability of groundwater quality using the entropy theory: I. Synthetic data , 2004 .

[33]  Francesco Napolitano,et al.  Rainfall threshold definition using an entropy decision approach and radar data , 2011 .

[34]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[35]  A. Brath,et al.  Analysis of the effects of levee heightening on flood propagation: example of the River Po, Italy , 2009 .

[36]  Tom G. Chapman,et al.  Entropy as a measure of hydrologic data uncertainty and model performance , 1986 .

[37]  Vijay P. Singh Effect of class-interval size on entropy , 1997 .

[38]  E. Ridolfi,et al.  EVALUATION OF RAINFALL THRESHOLDS THROUGH ENTROPY: INFLUENCE OF BIVARIATE DISTRIBUTION SELECTION , 2013 .

[39]  P. Bates,et al.  Distributed whole city water level measurements from the Carlisle 2005 urban flood event and comparison with hydraulic model simulations , 2009 .

[40]  Giuliano Di Baldassarre,et al.  Uncertainty in design flood profiles derived by hydraulic modelling , 2012 .

[41]  A. Brath,et al.  Floodplain management strategies for flood attenuation in the river Po , 2011 .

[42]  Sevinç Özkul Entropy-Based Assessment of Water Quality Monitoring Networks , 2001 .

[43]  T. Sturm,et al.  Open Channel Hydraulics , 2001 .

[44]  Vijay P. Singh,et al.  Application of Information Theory to Groundwater Quality Monitoring Networks , 2002 .

[45]  Jean A. Cunge,et al.  Of data and models , 2003 .

[46]  K. Beven,et al.  Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations , 2005 .

[47]  Hoshin Vijai Gupta,et al.  Using an informational entropy-based metric as a diagnostic of flow duration to drive model parameter identification , 2012 .

[48]  Paul D. Bates,et al.  Flood-plain mapping: a critical discussion of deterministic and probabilistic approaches , 2010 .

[49]  Francesco Napolitano,et al.  An entropy approach for evaluating the maximum information content achievable by an urban rainfall network , 2011 .

[50]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[51]  P. Bates,et al.  An entropy method for floodplain monitoring network design , 2012 .

[52]  P. Bates,et al.  Optimal Cross-Sectional Spacing in Preissmann Scheme 1D Hydrodynamic Models , 2009 .

[53]  Leonardo Alfonso,et al.  Information theory applied to evaluate the discharge monitoring network of the Magdalena River , 2013 .

[54]  Robert J. Abrahart,et al.  HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts , 2007, Environ. Model. Softw..

[55]  Durmus Cesur,et al.  GIS as an information technology framework for water modeling , 2007 .

[56]  Paul D. Bates,et al.  Near real‐time flood wave approximation on large rivers from space: Application to the River Po, Italy , 2010 .

[57]  Florian Pappenberger,et al.  Deriving distributed roughness values from satellite radar data for flood inundation modelling , 2007 .

[58]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[59]  H. Abida,et al.  Flood routing of regulated flows in Medjerda River, Tunisia , 2005 .

[60]  Demetris Koutsoyiannis An entropic‐stochastic representation of rainfall intermittency: The origin of clustering and persistence , 2006 .

[61]  L. Goddard Information Theory , 1962, Nature.

[62]  S. Weijs,et al.  Why hydrological predictions should be evaluated using information theory , 2010 .