New approaches for automatic threedimensional source localization of acoustic emissions--Applications to concrete specimens.

The task of locating a source in space by measuring travel time differences of elastic or electromagnetic waves from the source to several sensors is evident in varying fields. The new concepts of automatic acoustic emission localization presented in this article are based on developments from geodesy and seismology. A detailed description of source location determination in space is given with the focus on acoustic emission data from concrete specimens. Direct and iterative solvers are compared. A concept based on direct solvers from geodesy extended by a statistical approach is described which allows a stable source location determination even for partly erroneous onset times. The developed approach is validated with acoustic emission data from a large specimen leading to travel paths up to 1m and therefore to noisy data with errors in the determined onsets. The adaption of the algorithms from geodesy to the localization procedure of sources of elastic waves offers new possibilities concerning stability, automation and performance of localization results. Fracture processes can be assessed more accurately.

[1]  S. Tenbohlen,et al.  Detection and location of partial discharges in power transformers using acoustic and electromagnetic signals , 2008, IEEE Transactions on Dielectrics and Electrical Insulation.

[2]  Mao Chen Ge Analysis of Source Location Algorithms Part I: Overview and Non-Iterative Methods , 2003 .

[3]  F. Waldhauser,et al.  A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California , 2000 .

[4]  L. Geiger Herdbestimmung bei Erdbeben aus den Ankunftszeiten , 1910 .

[5]  Tribikram Kundu,et al.  Acoustic source localization. , 2014, Ultrasonics.

[6]  S. Bancroft An Algebraic Solution of the GPS Equations , 1985, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Jochen Horst Kurz Verifikation von Bruchprozessen bei gleichzeitiger Automatisierung der Schallemissionsanalyse an Stahl- und Stahlfaserbeton , 2006 .

[8]  E. Howells,et al.  Location of Partial Discharge Sites in On-Line Transformers , 1981, IEEE Transactions on Power Apparatus and Systems.

[9]  A hybrid location methodology , 2005 .

[10]  Barbara Schechinger Schallemissionsanalyse zur Überwachung der Schädigung von Stahlbeton , 2006 .

[11]  Gerd Manthei,et al.  Characterization of Acoustic Emission Sources in a Rock Salt Specimen under Triaxial Compression , 2005 .

[12]  William L. Ellsworth,et al.  Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California , 1984 .

[13]  Christian U. Grosse,et al.  Quantitative zerstörungsfreie Prüfung von Baustoffen mittels Schallemissionsanalyse und Ultraschall , 1996 .

[14]  Thomas Vogel,et al.  Acoustic emission for monitoring a reinforced concrete beam subject to four-point-bending , 2007 .

[15]  K. Feser,et al.  All-acoustic pd measurements of oil/paper-insulated transformers for pd-localization , 2004 .

[16]  Jose Pujol,et al.  Earthquake Location Tutorial: Graphical Approach and Approximate Epicentral Location Techniques , 2004 .

[17]  Jochen H Kurz,et al.  Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete. , 2005, Ultrasonics.

[18]  Joseph L. Awange,et al.  Algebraic Solution of GPS Pseudo-Ranging Equations , 2002, GPS Solutions.

[19]  R. H. Jones,et al.  A method for determining significant structures in a cloud of earthquakes , 1997 .

[20]  Markus Båth,et al.  Introduction to Seismology , 1973 .

[21]  Nicholas Deichmann,et al.  Rupture geometry from high-precision relative hypocentre locations of microearthquake clusters , 1992 .

[22]  Mao Chen Ge,et al.  ANALYSIS OF SOURCE LOCATION ALGORITHMS Part II: Iterative methods , 2003 .

[23]  Jean Virieux,et al.  Probabilistic Earthquake Location in 3D and Layered Models , 2000 .

[24]  Josef Sikula,et al.  New automatic localization technique of acoustic emission signals in thin metal plates. , 2009, Ultrasonics.

[25]  Lloyd O. Krause A Direct Solution to GPS-Type Navigation Equations , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[26]  R. Penrose A Generalized inverse for matrices , 1955 .

[27]  Sebastian Rost,et al.  ARRAY SEISMOLOGY: METHODS AND APPLICATIONS , 2002 .

[28]  Alfred Kleusberg,et al.  Analytical GPS Navigation Solution , 2003 .

[29]  Karen Margaret Holford,et al.  Delta T source location for acoustic emission , 2007 .

[30]  T. Kundu,et al.  Acoustic source localization in anisotropic plates. , 2012, Ultrasonics.