Effects of 3' dangling end stacking on the stability of GGCC and CCGG double helixes

[1]  Michael Zuker,et al.  Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information , 1981, Nucleic Acids Res..

[2]  O. C. Uhlenbeck,et al.  Equimolar addition of oligoribonucleotides with T4 RNA ligase , 1977, Nucleic Acids Res..

[3]  R. Ornstein,et al.  An optimized potential function for the calculation of nucleic acid interaction energies I. Base stacking , 1978, Biopolymers.

[4]  C. Chothia,et al.  Hydrophobic bonding and accessible surface area in proteins , 1974, Nature.

[5]  I. Tinoco,et al.  Calorimetric and spectroscopic investigation of the helix-to-coil transition of a ribo-oligonucleotide: rA7U7. , 1975, Journal of molecular biology.

[6]  W. Kauzmann Some factors in the interpretation of protein denaturation. , 1959, Advances in protein chemistry.

[7]  F. Frank-Kamenetskii,et al.  Simplification of the empirical relationship between melting temperature of DNA, its GC content and concentration of sodium ions in solution. , 1971, Biopolymers.

[8]  D. Patel,et al.  Structure and energetics of a hexanucleotide duplex with stacked trinucleotide ends formed by the sequence d(GAATTCGCG). , 1982, Biochemistry.

[9]  J. Pipas,et al.  Method for predicting RNA secondary structure. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[10]  N C Seeman,et al.  RNA double-helical fragments at atomic resolution. II. The crystal structure of sodium guanylyl-3',5'-cytidine nonahydrate. , 1976, Journal of molecular biology.

[11]  D. Pörchke Molecular states in single‐stranded adenylate chains by relaxation analysis , 1978 .

[12]  P. Doty,et al.  Self-complementary oligoribonucleotides: adenylic acid-uridylic acid block copolymers. , 1971, Journal of molecular biology.

[13]  W. P. Rindone,et al.  Computer-aided prediction of RNA secondary structures , 1982, Nucleic Acids Res..

[14]  D. Poerschke The nature of stacking interactions in polynucleotides. Molecular states in oligo- and polyribocytidylic acids by relaxation analysis , 1976 .

[15]  O. Uhlenbeck,et al.  Enzymatic oligoribonucleotide synthesis with T4 RNA ligase. , 1978, Biochemistry.

[16]  P. Borer,et al.  A model for base overlap in RNA , 1982, Nature.

[17]  Ruth Nussinov,et al.  Small changes in free energy assignments for unpaired bases do not affect predicted secondary structures in single stranded RNA , 1982, Nucleic Acids Res..

[18]  D. Turner,et al.  Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp. , 1983, Biochemistry.

[19]  D. Crothers,et al.  Improved estimation of secondary structure in ribonucleic acids. , 1973, Nature: New biology.

[20]  D. Porschke The Dynamics of Nucleic‐Acid Single‐Strand Conformation Changes , 1973 .

[21]  D. Turner,et al.  Laser temperature jump study of solvent effects of poly(adenylic acid) stacking. , 1980, Biochemistry.

[22]  T. Lohman,et al.  A semiempirical extension of polyelectrolyte theory to the treatment of oligoelectrolytes: Application to oligonucleotide helix‐coil transitions , 1978 .

[23]  I. Tinoco,et al.  Temperature‐dependent properties of dinucleoside phosphates , 1968, Biopolymers.

[24]  C Chothia,et al.  Stability and specificity of protein-protein interactions: the case of the trypsin-trypsin inhibitor complexes. , 1976, Journal of molecular biology.

[25]  J. Desnoyers,et al.  Heat capacity of solutions by flow microcalorimetry , 1971 .

[26]  J. Brahms,et al.  Conformation and thermodynamic properties of oligocytidylic acids. , 1967, Journal of molecular biology.

[27]  G. Fasman,et al.  Single-stranded oligomers and polymers of cytidylic and 2'-deoxycytidylic acids: comparative optical rotatory studies. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Blake,et al.  Effect of sodium ion on the high‐resolution melting of lambda DNA , 1979, Biopolymers.

[29]  T N Solie,et al.  The interaction of nucleosides in aqueous solution. , 1968, Journal of molecular biology.

[30]  D. Turner,et al.  Proton magnetic resonance melting studies of CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp. , 1983, Biochemistry.

[31]  T. Neilson,et al.  Oligoribonucleotide synthesis. X. An improved synthesis of the anticodon loop region of methionine transfer ribonucleic acid from E. coli , 1976 .

[32]  B. Pullman,et al.  Aspects of the Electronic Structure of the Purine and Pyrimidine Bases of the Nucleic Acids and of Their Interactions , 1968 .

[33]  D. Turner,et al.  Solvent effects on the dynamics of (dG‐dC)3 , 1983, Biopolymers.

[34]  Andrew Dearing,et al.  Studies of nucleotide conformations and interactions. The relative stabilities of double‐helical B‐DNA sequence isomers , 1981, Biopolymers.

[35]  D. Turner,et al.  Laser temperature-jump study of stacking in adenylic acid polymers. , 1979, Biochemistry.

[36]  W. Salser Globin mRNA sequences: analysis of base pairing and evolutionary implications. , 1978, Cold Spring Harbor symposia on quantitative biology.

[37]  I. Tinoco,et al.  Stability of ribonucleic acid double-stranded helices. , 1974, Journal of molecular biology.

[38]  J. Sturtevant,et al.  Heats of thermally induced helix–coil transitions of DNA in aqueous solution , 1973, Biopolymers.

[39]  I. Tinoco,et al.  Estimation of Secondary Structure in Ribonucleic Acids , 1971, Nature.

[40]  D. Kearns,et al.  Proton NMR evidence for a left-handed helical structure of poly(ribocytidylic acid) in neutral solution , 1982 .

[41]  S. Kim,et al.  Solvent-accessible surfaces of nucleic acids. , 1979, Journal of molecular biology.

[42]  G. Felsenfeld,et al.  The conformation of polyriboadenylic acid at low temperature and neutral pH. A single‐stranded rodlike structure , 1975, Biopolymers.

[43]  T. Lohman,et al.  Na+ effects on transitions of DNA and polynucleotides of variable linear charge density , 1976, Biopolymers.

[44]  K. Breslauer,et al.  Salt‐dependent conformational transitions in the self‐complementary deoxydodecanucleotide d(CGCAATTCGCG): Evidence for hairpin formation , 1983, Biopolymers.

[45]  H. Eisenberg,et al.  Deoxyribonueleate solutions: Sedimentation in a density gradient, partial specific volumes, density and refractive index increments, and preferential interactions , 1968, Biopolymers.

[46]  T. Lohman,et al.  Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity , 1978, Quarterly Reviews of Biophysics.

[47]  K. Breslauer,et al.  A calorimetric investigation of single stranded base stacking in the ribo-oligonucleotide A7. , 1977, Biophysical chemistry.

[48]  I. Tinoco,et al.  DNA and RNA oligomer thermodynamics: The effect of mismatched bases on double‐helix stability , 1981, Biopolymers.

[49]  J. Sturtevant,et al.  The Heat of the Reaction between Polyriboadenylic Acid and Polyribouridylic Acid , 1963 .

[50]  R Nussinov,et al.  Sequential folding of a messenger RNA molecule. , 1981, Journal of molecular biology.

[51]  S. D. Christian,et al.  Vapor pressure studies of hydrophobic interactions. formation of benzene-benzene and cyclohexane-cyclohexanol dimers in dilute aqueous solution , 1981 .

[52]  G. S. Manning The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides , 1978, Quarterly Reviews of Biophysics.

[53]  G. Felsenfeld,et al.  The physical and chemical properties of nucleic acids. , 1967, Annual review of biochemistry.

[54]  N C Seeman,et al.  RNA double-helical fragments at atomic resolution. I. The crystal and molecular structure of sodium adenylyl-3',5'-uridine hexahydrate. , 1976, Journal of molecular biology.

[55]  S. Shaner,et al.  Double helical DNA: conformations, physical properties, and interactions with ligands. , 1981, Annual review of biochemistry.

[56]  B. Pullman,et al.  Quantum-mechanical investigations of the electronic structure of nucleic acids and their constituents. , 1969, Progress in nucleic acid research and molecular biology.

[57]  D. Patel,et al.  Premelting and melting transitions in the d(CGCGAATTCGCG) self-complementary duplex in solution. , 1982, Biochemistry.

[58]  S. Abdulnur,et al.  HYDROPHOBIC STACKING OF BASES AND THE SOLVENT DENATURATION OF DNA * , 1964 .

[59]  P. Privalov,et al.  Thermodynamics of base interaction in (A)n and (A.U)n. , 1978, Journal of molecular biology.

[60]  D. Turner,et al.  Nuclear overhauser studies of CCGGAp, ACCGGp, and ACCGGUp. , 1983, Biochemistry.

[61]  N. Kallenbach,et al.  Secondary structure in polyuridylic acid. Non-classical hydrogen bonding and the function of the ribose 2'-hydroxyl group. , 1978, Journal of molecular biology.

[62]  E. Freire,et al.  Calorimetric determination of the heat capacity changes associated with the conformational transitions of polyriboadenylic acid and polyribouridylic acid , 1977, Biopolymers.

[63]  O. Sǐnanoğlu The solvophobic theory for the prediction of molecular conformations and biopolymer bindings in solutions with recent direct experimental tests , 1980 .

[64]  J. Brahms,et al.  Conformational stability of dinucleotides in solution. , 1967, Journal of molecular biology.

[65]  D. Turner,et al.  Solvent effects on the kinetics and thermodynamics of stacking in poly(cytidylic acid). , 1981, Biochemistry.

[66]  J. Neumann,et al.  1H‐nmr comparative studies of polynucleotides: Conformation and dynamic structure of polyribo(uridylic) and polyribo(cytidylic) acids in neutral solution , 1982 .