The Pullback Equation for Differential Forms

Introduction.- Part I Exterior and Differential Forms.- Exterior Forms and the Notion of Divisibility.- Differential Forms.- Dimension Reduction.- Part II Hodge-Morrey Decomposition and Poincare Lemma.- An Identity Involving Exterior Derivatives and Gaffney Inequality.- The Hodge-Morrey Decomposition.- First-Order Elliptic Systems of Cauchy-Riemann Type.- Poincare Lemma.- The Equation div u = f.- Part III The Case k = n.- The Case f x g > 0.- The Case Without Sign Hypothesis on f.- Part IV The Case 0 <= k <= n-1.- General Considerations on the Flow Method.- The Cases k = 0 and k = 1.- The Case k = 2.- The Case 3 <= k <= n-1.- Part V Holder Spaces.- Holder Continuous Functions.- Part VI Appendix.- Necessary Conditions.- An Abstract Fixed Point Theorem.- Degree Theory.- References.- Further Reading.- Notations.- Index.

[1]  C. McMullen Lipschitz maps and nets in Euclidean space , 1998 .

[2]  G. Carlier,et al.  Résolution du problème de Dirichlet pour lʼéquation du Jacobien prescrit via lʼéquation de Monge–Ampère , 2012 .

[3]  M. E. Bogovskii Solution of the first boundary value problem for the equation of continuity of an incompressible medium , 1979 .

[4]  Charles B. Morrey,et al.  A Variational Method in the Theory of Harmonic Integrals, II , 1956 .

[5]  J. Moser,et al.  On a partial differential equation involving the Jacobian determinant , 1990 .

[6]  L. Caffarelli Boundary regularity of maps with convex potentials – II , 1996 .

[7]  Jürgen Bolik H. Weyl's boundary value problems for differential forms , 2001, Differential and Integral Equations.

[8]  R. Kress Potentialtheoretische Randwertprobleme bei Tensorfeldern beliebiger Dimension und beliebigen Ranges , 1972 .

[9]  C B Morrey,et al.  A VARIATIONAL METHOD IN THE THEORY OF HARMONIC INTEGRALS. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[10]  The Pullback Equation For Degenerate Forms , 2010 .

[11]  B. Kleiner,et al.  Separated nets in Euclidean space and Jacobians of biLipschitz maps , 1997, dg-ga/9703022.

[12]  T. Rivière,et al.  Resolutions of the prescribed volume form equation , 1996 .

[13]  W. Borchers,et al.  On the equations rot v=g and div u=f with zero boundary conditions , 1990 .

[14]  B. Dacorogna,et al.  On the pullback equation φ*(g)=f , 2009 .

[15]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[16]  B. Dacorogna,et al.  A global version of the Darboux theorem with optimal regularity and Dirichlet condition , 2011, Advances in Differential Equations.

[17]  W. Wahl Estimating ∇u by div u and curl u , 1992 .

[18]  Jürgen Bolik Boundary value problems for differential forms on compact Riemannian manifolds, Part II , 2007 .

[19]  Cristian Barbarosie,et al.  REPRESENTATION OF DIVERGENCE-FREE VECTOR FIELDS , 2011 .

[20]  L. Tartar,et al.  On the solvability of the equation div $u = f$ in $L^{1}$ and in $C^{0}$ , 2003 .

[21]  E. Zehnder Note on smoothing symplectic and volume preserving diffeomorphisms , 1977 .

[22]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[23]  L. Caffarelli Boundary regularity of maps with convex potentials , 1992 .

[24]  J. Moser On the volume elements on a manifold , 1965 .

[25]  Calculus of Variations On the equation det ∇ u = f with no sign hypothesis , 2009 .

[26]  G. Schwarz Hodge Decomposition - A Method for Solving Boundary Value Problems , 1995 .

[27]  J. March Introduction to the Calculus of Variations , 1999 .

[28]  B. Dacorogna,et al.  An identity involving exterior derivatives and applications to Gaffney inequality , 2011 .

[29]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[30]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[31]  V. A. Solonnikov,et al.  Some problems of vector analysis and generalized formulations of boundary-value problems for the Navier-Stokes equations , 1978 .

[32]  Harmonische Funktionen und Jacobi-Determinanten von Diffeomorphismen , 1972 .

[33]  B. Dacorogna A relaxation theorem and its application to the equilibrium of gases , 1981 .

[34]  Ye Dong Prescribing the Jacobian determinant in Sobolev spaces , 1994 .