The Pullback Equation for Differential Forms
暂无分享,去创建一个
[1] C. McMullen. Lipschitz maps and nets in Euclidean space , 1998 .
[2] G. Carlier,et al. Résolution du problème de Dirichlet pour lʼéquation du Jacobien prescrit via lʼéquation de Monge–Ampère , 2012 .
[3] M. E. Bogovskii. Solution of the first boundary value problem for the equation of continuity of an incompressible medium , 1979 .
[4] Charles B. Morrey,et al. A Variational Method in the Theory of Harmonic Integrals, II , 1956 .
[5] J. Moser,et al. On a partial differential equation involving the Jacobian determinant , 1990 .
[6] L. Caffarelli. Boundary regularity of maps with convex potentials – II , 1996 .
[7] Jürgen Bolik. H. Weyl's boundary value problems for differential forms , 2001, Differential and Integral Equations.
[8] R. Kress. Potentialtheoretische Randwertprobleme bei Tensorfeldern beliebiger Dimension und beliebigen Ranges , 1972 .
[9] C B Morrey,et al. A VARIATIONAL METHOD IN THE THEORY OF HARMONIC INTEGRALS. , 1955, Proceedings of the National Academy of Sciences of the United States of America.
[10] The Pullback Equation For Degenerate Forms , 2010 .
[11] B. Kleiner,et al. Separated nets in Euclidean space and Jacobians of biLipschitz maps , 1997, dg-ga/9703022.
[12] T. Rivière,et al. Resolutions of the prescribed volume form equation , 1996 .
[13] W. Borchers,et al. On the equations rot v=g and div u=f with zero boundary conditions , 1990 .
[14] B. Dacorogna,et al. On the pullback equation φ*(g)=f , 2009 .
[15] B. Dacorogna. Direct methods in the calculus of variations , 1989 .
[16] B. Dacorogna,et al. A global version of the Darboux theorem with optimal regularity and Dirichlet condition , 2011, Advances in Differential Equations.
[17] W. Wahl. Estimating ∇u by div u and curl u , 1992 .
[18] Jürgen Bolik. Boundary value problems for differential forms on compact Riemannian manifolds, Part II , 2007 .
[19] Cristian Barbarosie,et al. REPRESENTATION OF DIVERGENCE-FREE VECTOR FIELDS , 2011 .
[20] L. Tartar,et al. On the solvability of the equation div $u = f$ in $L^{1}$ and in $C^{0}$ , 2003 .
[21] E. Zehnder. Note on smoothing symplectic and volume preserving diffeomorphisms , 1977 .
[22] O. A. Ladyzhenskai︠a︡,et al. Linear and quasilinear elliptic equations , 1968 .
[23] L. Caffarelli. Boundary regularity of maps with convex potentials , 1992 .
[24] J. Moser. On the volume elements on a manifold , 1965 .
[25] Calculus of Variations On the equation det ∇ u = f with no sign hypothesis , 2009 .
[26] G. Schwarz. Hodge Decomposition - A Method for Solving Boundary Value Problems , 1995 .
[27] J. March. Introduction to the Calculus of Variations , 1999 .
[28] B. Dacorogna,et al. An identity involving exterior derivatives and applications to Gaffney inequality , 2011 .
[29] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[30] C. B. Morrey. Multiple Integrals in the Calculus of Variations , 1966 .
[31] V. A. Solonnikov,et al. Some problems of vector analysis and generalized formulations of boundary-value problems for the Navier-Stokes equations , 1978 .
[32] Harmonische Funktionen und Jacobi-Determinanten von Diffeomorphismen , 1972 .
[33] B. Dacorogna. A relaxation theorem and its application to the equilibrium of gases , 1981 .
[34] Ye Dong. Prescribing the Jacobian determinant in Sobolev spaces , 1994 .