Optical Properties of Semiconductor Quantum Dots

An important step towards realizing the advantages of quantum dots in electro-optic applications is to understand the excitation dependences of optical properties. This paper discusses results obtained using a microscopic theory. The calculations uncovered complicated carrier density and electronic structure influences on absorption, gain and refractive index that can be attributed to a delicate balancing of electronic-structure and many-body effects in a coupled quantum-dot-quantum-well system.

[1]  Walter Riess,et al.  Realization of a silicon nanowire vertical surround-gate field-effect transistor. , 2006, Small.

[2]  V. Zwiller,et al.  Single quantum dot nanowire LEDs. , 2007, Nano letters.

[3]  T. Takéuchi The Diamagnetism of the Free Electron , 1931 .

[4]  H. Sakaki,et al.  Density of states and phonon-induced relaxation of electrons in semiconductor quantum dots , 1997 .

[5]  Lundstrom,et al.  Exciton storage in semiconductor self-assembled quantum dots , 1999, Science.

[6]  L. Coldren,et al.  Surface migration induced self‐aligned InAs islands grown by molecular beam epitaxy , 1995 .

[7]  E. Bakkers,et al.  Growth kinetics of heterostructured GaP-GaAs nanowires. , 2006, Journal of the American Chemical Society.

[8]  T. Reinecke,et al.  Exciton diamagnetic shift in semiconductor nanostructures , 1998 .

[9]  Polarons in semiconductor quantum dots and their role in the quantum kinetics of carrier relaxation , 2004, cond-mat/0406563.

[10]  Elisabeth Müller,et al.  Optically bright quantum dots in single Nanowires. , 2005, Nano letters.

[11]  L. Samuelson,et al.  InAs1-xPx nanowires for device engineering. , 2006, Nano letters.

[12]  Gammon,et al.  Fine structure splitting in the optical spectra of single GaAs quantum dots. , 1996, Physical review letters.

[13]  Lande g Factors and Orbital Momentum Quenching in Semiconductor Quantum Dots , 2004, cond-mat/0410678.

[14]  O. Schmidt,et al.  Hierarchical self-assembly of GaAs/AlGaAs quantum dots. , 2004, Physical review letters.

[15]  Chien-Ping Lee,et al.  Impacts of structural asymmetry on the magnetic response of excitons and biexcitons in single self-assembled In(Ga)As quantum rings , 2009 .

[16]  K. Sanaka,et al.  Indistinguishable photons from independent semiconductor nanostructures. , 2009, Physical review letters.

[17]  A. Zunger,et al.  Peculiar many-body effects revealed in the spectroscopy of highly charged quantum dots , 2007 .

[18]  Lars Samuelson,et al.  Tunable double quantum dots in InAs nanowires defined by local gate electrodes. , 2005, Nano letters.

[19]  Y. H. Chen,et al.  Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress. , 2010, Physical review letters.

[20]  G. Bester,et al.  Nanowire quantum dots as an ideal source of entangled photon pairs. , 2009, Physical review letters.

[21]  O. Schmidt,et al.  Self-assembled quantum dots with tunable thickness of the wetting layer: Role of vertical confinement on interlevel spacing , 2009 .

[22]  E. Villaseñor Introduction to Quantum Mechanics , 2008, Nature.

[23]  J. Oshinowo,et al.  In situ fabrication of self‐aligned InGaAs quantum dots on GaAs multiatomic steps by metalorganic chemical vapor deposition , 1995 .

[24]  S. Ulloa,et al.  Polarized excitons in nanorings and the optical Aharonov-Bohm effect , 2002, cond-mat/0207183.

[25]  Arthur C. Gossard,et al.  Control of Exciton Fluxes in an Excitonic Integrated Circuit , 2008, Science.

[26]  J. Kitching,et al.  Microfabricated alkali atom vapor cells , 2004 .

[27]  P. Offermans,et al.  Oscillatory persistent currents in self-assembled quantum rings. , 2007, Physical review letters.

[28]  J Gómez Rivas,et al.  Modification of the photoluminescence anisotropy of semiconductor nanowires by coupling to surface plasmon polaritons. , 2007, Optics letters.

[29]  T. Katsuyama,et al.  Quantum size microcrystals grown using organometallic vapor phase epitaxy , 1991 .

[30]  V. Zwiller,et al.  Growth and characterization of InP nanowires with InAsP insertions. , 2007, Nano letters.

[31]  Lars-Erik Wernersson,et al.  Vertical wrap-gated nanowire transistors , 2006 .

[32]  Michael Pepper,et al.  Electrically Driven Single-Photon Source , 2001, Science.

[33]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[34]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[35]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[36]  Few-particle effects in semiconductor quantum dots: observation of multicharged excitons , 2000, Physical review letters.

[37]  Aharonov-Bohm excitons at elevated temperatures in type-II ZnTe/ZnSe quantum dots. , 2007, Physical review letters.

[38]  E Ikonen,et al.  Quantum interference of tunably indistinguishable photons from remote organic molecules , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[39]  Optical exciton Aharonov-Bohm effect, persistent current, and magnetization in semiconductor nanorings of type I and II , 2005, cond-mat/0511324.

[40]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[41]  D. Bohm,et al.  Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .

[42]  P. Hawrylak,et al.  Atomistic theory of electronic and optical properties ofInAs∕InPself-assembled quantum dots on patterned substrates , 2005, cond-mat/0505137.

[43]  Stephan W Koch,et al.  Many-body effects in the gain spectra of highly excited quantum-dot lasers , 2001 .

[44]  V. Ustinov,et al.  Diffusion-induced growth of GaAs nanowhiskers during molecular beam epitaxy: Theory and experiment , 2005 .

[45]  A. Aronov,et al.  Magnetic flux effects in disordered conductors , 1987 .

[46]  S. Muto,et al.  Stacked InAs Self-Assembled Quantum Dots on (001) GaAs Grown by Molecular Beam Epitaxy , 1995 .

[47]  A. Badolato,et al.  Observation of Faraday rotation from a single confined spin , 2006, quant-ph/0610110.

[48]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[49]  R. A. Smith,et al.  Single Photon Sources , 2008 .

[50]  G. Salamo,et al.  Aharonov-Bohm interference in neutral excitons: effects of built-in electric fields. , 2009, Physical review letters.

[51]  D. Ritchie,et al.  Two-photon interference of the emission from electrically tunable remote quantum dots , 2009, 0911.3997.

[52]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[53]  Xiangfeng Duan,et al.  Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.

[54]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[55]  D. Gammon,et al.  An All-Optical Quantum Gate in a Semiconductor Quantum Dot , 2003, Science.

[56]  T. Ihn,et al.  Energy spectra of quantum rings , 2001, Nature.

[57]  M. Bichler,et al.  Single photon emission based on coherent state preparation , 2007 .

[58]  J. Renard,et al.  Exciton and biexciton luminescence from single GaN/AlN quantum dots in nanowires. , 2008, Nano letters.

[59]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[60]  M. Lorke,et al.  Excitation dependences of gain and carrier-induced refractive index change in quantum-dot lasers , 2007 .

[61]  V. Fock Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld , 1928 .

[62]  R. Roemer,et al.  Aharonov-Bohm effect for an exciton , 1999, cond-mat/9906314.

[63]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[64]  R. Sillitto The Quantum Theory of Light , 1974 .

[65]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[66]  P. Petroff,et al.  Semiconductor quantum dot: a quantum light source of multicolor photons with tunable statistics. , 2001, Physical review letters.

[67]  B. Gerardot,et al.  Entangled photon pairs from semiconductor quantum dots. , 2005, Physical Review Letters.

[68]  Pierre M. Petroff,et al.  Optical pumping of a single hole spin in a quantum dot , 2008, Nature.

[69]  M. Meyyappan,et al.  Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor , 2004 .

[70]  G. Medeiros-Ribeiro,et al.  Aharonov-Bohm signature for neutral polarized excitons in type-II quantum dot ensembles. , 2003, Physical review letters.

[71]  G. Solomon,et al.  Interference of single photons from two separate semiconductor quantum dots. , 2010, Physical review letters.

[72]  F. Glas Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires , 2006 .

[73]  Larry A. Coldren,et al.  High-frequency single-photon source with polarization control , 2007 .

[74]  Y. Yamamoto,et al.  Triggered single photons from a quantum dot. , 2001, Physical review letters.

[75]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[76]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[77]  C Bräuchle,et al.  Indistinguishable photons from a single molecule. , 2005, Physical review letters.

[78]  Nikolai N. Ledentsov,et al.  Ordering phenomena in InAs strained layer morphological transformation on GaAs (100) surface , 1995 .

[79]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[80]  Lucio Robledo,et al.  Conditional Dynamics of Interacting Quantum Dots , 2008, Science.

[81]  Peter Michael Smowton,et al.  Filamentation and linewidth enhancement factor In InGaAs quantum dot lasers , 2001, CLEO 2001.

[82]  S. Ulloa,et al.  Polarization and Aharonov-Bohm oscillations in quantum-ring magnetoexcitons , 2005, cond-mat/0504569.

[83]  V. N. Petrov,et al.  Recombination emission from InAs quantum dots grown on vicinal GaAs surfaces , 2000 .

[84]  D. Gershoni,et al.  Entanglement on demand through time reordering , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[85]  L. Samuelson,et al.  Tunable effective g factor in InAs nanowire quantum dots , 2005 .

[86]  A. Greilich,et al.  Nuclei-Induced Frequency Focusing of Electron Spin Coherence , 2007, Science.

[87]  Florian Siegert,et al.  Epitaxial core – shell and core – multishell nanowire heterostructures , 2002 .

[88]  Lixin He,et al.  Electronic structure of self-assembled InAs/InP quantum dots: A Comparison with self-assembled InAs/GaAs quantum dots , 2007, 0708.3469.

[89]  Dieter Schuh,et al.  Optically programmable electron spin memory using semiconductor quantum dots , 2004, Nature.

[90]  Stephan W Koch,et al.  Semiconductor-Laser Fundamentals , 1999 .

[91]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[92]  Lars Samuelson,et al.  One-dimensional heterostructures in semiconductor nanowhiskers , 2002 .

[93]  Konstantin K. Likharev,et al.  Single-electron devices and their applications , 1999, Proc. IEEE.

[94]  Wen‐Hao Chang,et al.  Diamagnetic response of exciton complexes in semiconductor quantum dots. , 2008, Physical review letters.

[95]  M. Lorke,et al.  Influence of carrier-carrier and carrier-phonon correlations on optical absorption and gain in quantum-dot systems , 2005, cond-mat/0509543.

[96]  R. J. Luyken,et al.  Spectroscopy of nanoscopic semiconductor rings. , 1999, Physical review letters.

[97]  L. J. Sham,et al.  Rabi oscillations of excitons in single quantum dots. , 2001, Physical review letters.

[98]  K. Karrai,et al.  Optical emission from a charge-tunable quantum ring , 2000, Nature.

[99]  Ian Farrer,et al.  Two-photon interference of the emission from electrically tunable remote quantum dots , 2010 .

[100]  Kevin F. Brennan,et al.  Quantum Semiconductor Structures , 1992 .

[101]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[102]  K. Nishi,et al.  Carrier–carrier interaction in single In0.5Ga0.5As quantum dots at room temperature investigated by near-field scanning optical microscope , 2003 .

[103]  D. Ritchie,et al.  Strong directional dependence of single-quantum-dot fine structure , 2005 .

[104]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[105]  X. Ye,et al.  Growth of InAs quantum dots on vicinal GaAs (100) substrates by metalorganic chemical vapor deposition and their optical properties , 2006 .

[106]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[107]  Benson,et al.  Regulated and entangled photons from a single quantum Dot , 2000, Physical review letters.

[108]  V. Zwiller,et al.  Orientation-dependent optical-polarization properties of single quantum dots in nanowires. , 2008, Small.

[109]  G. Patriarche,et al.  Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy , 2006, Nanotechnology.

[110]  N. Gisin,et al.  Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1999 .

[111]  W. Chow,et al.  Anomalous carrier-induced dispersion in quantum-dot active media , 2002 .

[112]  R. Feynman Simulating physics with computers , 1999 .

[113]  Sandu Popescu,et al.  Dynamical quantum non-locality , 2010 .

[114]  Erik Lind,et al.  Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor. , 2006, Nano letters.

[115]  O. Schmidt,et al.  Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K , 2007 .

[116]  L. Samuelson,et al.  Infrared photodetectors in heterostructure nanowires. , 2006, Nano letters.

[117]  C. Buizert,et al.  Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.

[118]  Tohru Suemoto,et al.  High collection efficiency in fluorescence microscopy with a solid immersion lens , 1999 .

[119]  Y. Niquet Electronic and optical properties of InAs/GaAs nanowire superlattices , 2006 .

[120]  Peter Michler,et al.  Quantum correlation among photons from a single quantum dot at room temperature , 2000, Nature.

[121]  V. C. Moore,et al.  Optical Signatures of the Aharonov-Bohm Phase in Single-Walled Carbon Nanotubes , 2004, Science.

[122]  D. Ritchie,et al.  Improved fidelity of triggered entangled photons from single quantum dots , 2006, quant-ph/0601187.

[123]  P. Hawrylak Excitonic artificial atoms: Engineering optical properties of quantum dots , 1999 .

[124]  V. Ustinov,et al.  The effective thickness, temperature and growth rate behavior of quantum dot ensembles , 2004 .

[125]  M Paillard,et al.  Spin relaxation quenching in semiconductor quantum dots. , 2001, Physical review letters.

[126]  A. A. Gorbunov,et al.  Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots , 2002 .

[127]  D. Bimberg,et al.  Exciton relaxation and dephasing in quantum-dot amplifiers from room to cryogenic temperature , 2002 .

[128]  Lars Samuelson,et al.  Few-Electron Quantum Dots in Nanowires , 2004 .

[129]  A. Forchel,et al.  Optical detection of the Aharonov-Bohm effect on a charged particle in a nanoscale quantum ring. , 2003, Physical review letters.

[130]  P. Hawrylak,et al.  Hidden symmetries in the energy levels of excitonic ‘artificial atoms’ , 2000, Nature.

[131]  M. Lorke,et al.  Anomaly in the excitation dependence of the optical gain of semiconductor quantum dots , 2006 .