Optimal Error Estimates for a Semi-Implicit Euler Scheme for Incompressible Fluids with Shear Dependent Viscosities

Certain rheological behaviors of fluids in engineering sciences are modeled by power law ansatz with $p\in(1,2]$. In the present paper a semi-implicit time discretization scheme for such fluids is proposed. The main result is the optimal $\mathcal{O}(k)$ error estimate, where $k$ is the time step size. Our results hold in the range $p\in(3/2,2]$ (in the three-dimensional setting) for strong solutions of the continuous problem, whose existence is guaranteed under appropriate assumptions on the data. The estimates are uniform with respect to the degeneracy parameter $\delta\in[0,\delta_0]$ of the extra stress tensor. Additional regularity properties of the solution of the discrete problem are proved.

[1]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[2]  Dieter Bothe,et al.  Lp-Theory for a Class of Non-Newtonian Fluids , 2007, SIAM J. Math. Anal..

[3]  R. Temam Navier-Stokes Equations , 1977 .

[4]  Jozef Kačur,et al.  Method of rothe in evolution equations , 1986 .

[5]  L. Diening,et al.  Strong Solutions for Generalized Newtonian Fluids , 2005 .

[6]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[7]  John W. Barrett,et al.  A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow , 1998 .

[8]  John W. Barrett,et al.  Finite element approximation of the p-Laplacian , 1993 .

[9]  J. Necas,et al.  Young Measure‐Valued Solutions for Non-Newtonian Incompressible Fluids1 , 1994 .

[10]  Etienne Emmrich,et al.  Error of the two-step BDF for the incompressible Navier-Stokes problem , 2004 .

[11]  W. B. Liu,et al.  Quasi-norm Error Bounds for the Nite Element Approximation of a Non-newtonian Ow , 1994 .

[12]  J. Málek Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .

[13]  Kumbakonam R. Rajagopal,et al.  Chapter 5 – Mathematical Issues Concerning the Navier–Stokes Equations and Some of Its Generalizations , 2005 .

[14]  M. Růžička Modeling, Mathematical and Numerical Analysis of Electrorheological Fluids , 2004 .

[15]  A. Prohl,et al.  On time-discretizations for generalized Newtonian fluids , 2002 .

[16]  W. B. Liu,et al.  Quasi-Norm interpolation error estimates for the piecewise linear finite element approximation of p-Laplacian problems , 2005, Numerische Mathematik.

[17]  J. Málek,et al.  On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications , 2008 .

[18]  John W. Barrett,et al.  Finite element approximation of the parabolic p -Laplacian , 1994 .

[19]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[20]  L. Berselli,et al.  Mathematics of Large Eddy Simulation of Turbulent Flows , 2005 .

[21]  L. Diening,et al.  Existence of weak solutions for unsteady motions of generalized Newtonian fluids , 2010 .

[22]  Karel Rektorys,et al.  The method of discretization in time and partial differential equations , 1982 .

[23]  Nina Uraltseva,et al.  Nonlinear Problems in Mathematical Physics and Related Topics II , 2002 .

[24]  Josef Málek,et al.  An existence result for fluids with shear dependent viscosity — Steady flows , 1997 .

[25]  L. Berselli,et al.  Existence of Strong Solutions for Incompressible Fluids with Shear Dependent Viscosities , 2010 .

[26]  Lars Diening,et al.  Fractional estimates for non-differentiable elliptic systems with general growth , 2008 .

[27]  Andreas Prohl,et al.  On Fully Implicit Space-Time Discretization for Motions of Incompressible Fluids with Shear-Dependent Viscosities: The Case p ≤ 2 , 2001, SIAM J. Numer. Anal..

[28]  R. Rannacher,et al.  On the Smoothing Property of the Galerkin Method for Parabolic Equations , 1982 .

[29]  Kumbakonam R. Rajagopal,et al.  EXISTENCE AND REGULARITY OF SOLUTIONS AND THE STABILITY OF THE REST STATE FOR FLUIDS WITH SHEAR DEPENDENT VISCOSITY , 1995 .

[30]  Etienne Emmrich,et al.  Convergence of a time discretization for a class of non-Newtonian fluid flow , 2008 .

[31]  CARSTEN EBMEYER,et al.  Optimal Convergence for the Implicit Space-Time Discretization of Parabolic Systems with p-Structure , 2007, SIAM J. Numer. Anal..

[32]  J. Málek,et al.  ON THE NON-NEWTONIAN INCOMPRESSIBLE FLUIDS , 1993 .

[33]  Michael Ržička A note on steady flow of fluids with shear dependent viscosity , 1997 .

[34]  M. Ruzicka,et al.  Non-Newtonian fluids and function spaces , 2007 .

[35]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[36]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[37]  John W. Barrett,et al.  Finite element approximation of some degenerate monotone quasilinear elliptic systems , 1996 .

[38]  Lars Diening,et al.  Numerische Mathematik Interpolation operators in Orlicz – Sobolev spaces , 2007 .

[39]  Lars Diening,et al.  Semi-implicit Euler Scheme for Generalized Newtonian Fluids , 2006, SIAM J. Numer. Anal..

[40]  R. Rautmann H 2 -convergence of Rothe's scheme to the Navier-Stokes equations , 1995 .

[41]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .