Matrices for graphs, designs and codes

The adjacency matrix of a graph can be interpreted as the incidence matrix of a design, or as the generator matrix of a binary code. Here these relations play a central role. We consider graphs for which the corresponding design is a (symmetric) block design or (group) divisible design. Such graphs are strongly regular (in case of a block design) or very similar to a strongly regular graph (in case of a divisible design). Many constructions and properties for these kind of graphs are obtained. We also consider the binary code of a strongly regular graph, work out some theory and give several examples.

[1]  Vladimir D. Tonchev,et al.  Spreads in Strongly Regular Graphs , 1996, Des. Codes Cryptogr..

[2]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[3]  Willem H. Haemers,et al.  Deza graphs: A generalization of strongly regular graph , 1999 .

[4]  Willem H. Haemers Divisible designs with r-lambda1 = 1 , 1991, J. Comb. Theory, Ser. A.

[5]  Haemers Tilburg University Strongly Regular Graphs with Parameters ( 4 m 4 , 2 m 4 + m 2 , m 4 + m 2 , m 4 + m 2 ) Exist for All m > 1 , 2008 .

[6]  D. Jungnickel,et al.  Divisible difference sets with multiplier −1 , 1990 .

[7]  Andries E. Brouwer,et al.  Strongly regular graphs and partial geometries , 1984 .

[8]  Jean Doyen,et al.  Ranks of incidence matrices of Steiner triple systems , 1978 .

[9]  Willem H. Haemers,et al.  Strongly regular graphs with parameters (4m4, 2m4+m2, m4+m2, m4+m2) exist for all m>1 , 2010, Eur. J. Comb..

[10]  Willem H. Haemers,et al.  The Hermitian two-graph and its code , 2001 .

[11]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[12]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[13]  Andries E. Brouwer,et al.  Some 2-ranks , 1992, Discret. Math..

[14]  Brendan D. McKay,et al.  Classification of regular two-graphs on 36 and 38 vertices , 2001, Australas. J Comb..

[15]  Jennifer D. Key,et al.  Designs and Codes: An update , 1996, Des. Codes Cryptogr..

[16]  Vladimir D. Tonchev,et al.  A Design and a Code Invariant under the Simple Group Co3 , 1993, J. Comb. Theory, Ser. A.

[17]  M. Peeters Ranks and structure of graphs , 1995 .

[18]  Arthur A. Drisko,et al.  Binary Codes of Odd-order Nets , 1999 .

[19]  A. Brouwer,et al.  On the p-Rank of the Adjacency Matrices of Strongly Regular Graphs , 1992 .

[20]  G. Eric Moorhouse Bruck nets, codes, and characters of loops , 1991, Des. Codes Cryptogr..

[21]  Peter J. Cameron,et al.  Designs, graphs, codes, and their links , 1991 .

[22]  Francis Buekenhout Handbook of incidence geometry : buildings and foundations , 1995 .

[23]  Peter J. Cameron,et al.  Strongly regular graphs , 2003 .

[24]  Andries E. Brouwer,et al.  Block designs , 1996 .

[25]  Asif Zaman,et al.  MOORE GRAPHS OF DIAMETER 2 AND 3 , 2010 .

[26]  Edward Spence,et al.  Regular two-graphs on 36 vertices , 1995 .

[27]  J. Seidel,et al.  BOUNDS FOR SYSTEMS OF LINES, AND JACOBI POLYNOMIALS , 1975 .

[28]  A.J.L. Paulus,et al.  Conference matrices and graphs of order 26 , 1973 .

[29]  Hanfried Lenz,et al.  Design theory , 1985 .

[30]  Vladimir D. Tonchev Binary codes derived from the Hoffman-Singleton and Higman-Sims graphs , 1997, IEEE Trans. Inf. Theory.

[31]  W. Haemers,et al.  Association schemes , 1996 .

[32]  Willem H. Haemers,et al.  Binary Codes of Strongly Regular Graphs , 1999, Des. Codes Cryptogr..

[33]  Michael S. Jacobson,et al.  Graph spectra , 1996, Discret. Math..

[34]  Arunas Rudvalis (v, k, λ)-Graphs and polarities of (v, k, λ)-designs , 1971 .

[35]  R. C. Bose Symmetric group divisible designs with the dual property , 1977 .

[36]  Xavier L. Hubaut,et al.  Strongly regular graphs , 1975, Discret. Math..

[37]  Willem H. Haemers,et al.  Strongly Regular Graphs with Parameters (4m^4, 2m^4 + m^2, m^4 + m^2, m^4 + m2) Exist for All m>1 , 2008 .