Review of Single Crystal Synthesis of 11 Iron-Based Superconductors

The 11 system in the iron-based superconducting family has become one of the most extensively studied materials in the research of high-temperature superconductivity, due to their simple structure and rich physical properties. Many exotic properties, such as multiband electronic structure, electronic nematicity, topology and antiferromagnetic order, provide strong support for the theory of high-temperature superconductivity, and have been at the forefront of condensed matter physics in the past decade. One noteworthy aspect is that a high upper critical magnetic field, large critical current density and lower toxicity give the 11 system good application prospects. However, the research on 11 iron-based superconductors faces numerous obstacles, mainly stemming from the challenges associated with producing high-quality single crystals. Since the discovery of FeSe superconductivity in 2008, researchers have made significant progress in crystal growth, overcoming the hurdles that initially impeded their studies. Consequently, they have successfully established the complete phase diagrams of 11 iron-based superconductors, including FeSe1−xTex, FeSe1−xSx and FeTe1−xSx. In this paper, we aim to provide a comprehensive summary of the preparation methods employed for 11 iron-based single crystals over the past decade. Specifically, we will focus on hydrothermal, chemical vapor transport (CVT), self-flux and annealing methods. Additionally, we will discuss the quality, size, and superconductivity properties exhibited by single crystals obtained through different preparation methods. By exploring these aspects, we can gain a better understanding of the advantages and limitations associated with each technique. High-quality single crystals serve as invaluable tools for advancing both the theoretical understanding and practical utilization of high-temperature superconductivity.

[1]  S. Bending,et al.  Unconventional localization of electrons inside of a nematic electronic phase , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Yufeng Zhang,et al.  Significant enhancement of critical current density in H+-intercalated FeSe single crystal , 2022, Superconductor Science and Technology.

[3]  Kunihiko Hashimoto,et al.  Pure nematic quantum critical point accompanied by a superconducting dome , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[4]  U. Rößler,et al.  Nematic state of the FeSe superconductor , 2022, Physical Review B.

[5]  V. Ivanovski,et al.  Thermoelectricity and electronic correlation enhancement in FeS by light Se doping , 2022, Physical Review B.

[6]  Meng Li,et al.  Protonation-induced discrete superconducting phases in bulk FeSe single crystals , 2021, Physical Review B.

[7]  Yufeng Zhang,et al.  Hydrothermal Synthesis and Transport Properties of FeS1-xTex (0 ≤ x ≤ 0.15) Single Crystals , 2021, Journal of Superconductivity and Novel Magnetism.

[8]  Meng Li,et al.  Hydrothermal synthesis and complete phase diagram of FeSe1−xSx (0≤x≤1) single crystals , 2021 .

[9]  Yufeng Zhang,et al.  Electronic transport properties and hydrostatic pressure effect of FeSe0.67Te0.33 single crystals free of phase separation , 2021, Superconductor Science and Technology.

[10]  K. Hashimoto,et al.  High-pressure phase diagrams of FeSe1−xTex: correlation between suppressed nematicity and enhanced superconductivity , 2021, Nature Communications.

[11]  A. Coldea Electronic Nematic States Tuned by Isoelectronic Substitution in Bulk FeSe1−x S x , 2020, Frontiers in Physics.

[12]  T. Shibauchi,et al.  Exotic Superconducting States in FeSe-based Materials , 2020, Journal of the Physical Society of Japan.

[13]  K. Kadowaki,et al.  Superconducting and tetragonal-to-orthorhombic transitions in single crystals of FeSe1−xTex (0≤ x ≤0.61) , 2019 .

[14]  Yue Sun,et al.  Review of annealing effects and superconductivity in Fe1+yTe1−xSex superconductors , 2019, Superconductor Science and Technology.

[15]  P. Canfield,et al.  Bulk Superconductivity and Role of Fluctuations in the Iron-Based Superconductor FeSe at High Pressures. , 2019, Physical review letters.

[16]  Zhongnan Guo,et al.  Synthesis, structure and superconductivity of FeS1−xSex (0 ≤ x ≤ 1) solid solution crystals , 2019, CrystEngComm.

[17]  Takao Watanabe,et al.  Incoherent-coherent crossover and the pseudogap in Te-annealed superconducting Fe1+yTe1−xSex revealed by magnetotransport measurements , 2019, Physical Review B.

[18]  D. Graf,et al.  Anomalous high-magnetic field electronic state of the nematic superconductors FeSe1−xSx , 2019, Physical Review Research.

[19]  V. Nagarajan,et al.  Coexistence of orbital and quantum critical magnetoresistance in FeSe1−xSx , 2019, Physical Review Research.

[20]  T. Shibauchi,et al.  Electrical resistivity across a nematic quantum critical point , 2019, Nature.

[21]  X. H. Chen,et al.  FeSe-based superconductors with a superconducting transition temperature of 50 K , 2018, New Journal of Physics.

[22]  Y. Lee,et al.  Persistent correlation between superconductivity and antiferromagnetic fluctuations near a nematic quantum critical point in FeSe1−xSx , 2018, Physical Review B.

[23]  Jian-Xin Zhu,et al.  Orbital Selectivity Enhanced by Nematic Order in FeSe. , 2018, Physical review letters.

[24]  H. Yoshizawa,et al.  Anisotropic pressure effects on superconductivity in Fe1+yTe1-xSx , 2018, 1803.00782.

[25]  H. Kontani,et al.  Abrupt change of the superconducting gap structure at the nematic critical point in FeSe1−xSx , 2017, Proceedings of the National Academy of Sciences.

[26]  N. Tamura,et al.  Imaging Anomalous Nematic Order and Strain in Optimally Doped BaFe_{2}(As,P)_{2}. , 2017, Physical review letters.

[27]  S. Du,et al.  Evidence for Majorana bound states in an iron-based superconductor , 2017, Science.

[28]  Shik Shin,et al.  Observation of topological superconductivity on the surface of an iron-based superconductor , 2017, Science.

[29]  S. Clarke,et al.  Suppression of electronic correlations by chemical pressure from FeSe to FeS , 2017, 1705.11139.

[30]  Y. C. Chan,et al.  Maximizing Tc by tuning nematicity and magnetism in FeSe1−xSx superconductors , 2017, Nature Communications.

[31]  H. Kontani,et al.  High-T_{c} Superconductivity in FeSe at High Pressure: Dominant Hole Carriers and Enhanced Spin Fluctuations. , 2016, Physical review letters.

[32]  S. Pyon,et al.  Effects of Iodine Annealing on Fe1+yTe0.6Se0.4 , 2016, 1609.09200.

[33]  S. Pyon,et al.  Influence of interstitial Fe to the phase diagram of Fe1+yTe1−xSex single crystals , 2016, Scientific Reports.

[34]  H. Yaguchi,et al.  Size Dependence of Oxygen-Annealing Effects on Superconductivity of Fe1+yTe1−xSx , 2016, 1608.04957.

[35]  K. Jin,et al.  Synthesis of large FeSe superconductor crystals via ion release/introduction and property characterization* , 2016 .

[36]  T. Qian,et al.  Enhanced superconductivity accompanying a Lifshitz transition in electron-doped FeSe monolayer , 2016, Nature Communications.

[37]  P. Canfield,et al.  Variation of transition temperatures and residual resistivity ratio in vapor-grown FeSe and Fe(Se,S) , 2016, 1606.00500.

[38]  T. Shibauchi,et al.  Nematic quantum critical point without magnetism in FeSe1−xSx superconductors , 2016, Proceedings of the National Academy of Sciences.

[39]  J. Wosnitza,et al.  Normal state above the upper critical field in Fe1+yTe1-x(Se,S)x , 2016 .

[40]  M. Cazayous,et al.  Charge-induced nematicity in FeSe , 2016, Proceedings of the National Academy of Sciences.

[41]  S. Pyon,et al.  Electron carriers with possible Dirac-cone-like dispersion in FeSe$_{1-x}$S$_x$ ($x$ = 0 and 0.14) single crystals triggered by structural transition , 2016, 1603.01347.

[42]  S. Pyon,et al.  Effects of Pnictogen Atmosphere Annealing on Fe 1+ y Te 0.6 Se 0.4 , 2016, 1601.07703.

[43]  J. Q. Yan,et al.  Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe , 2015, Nature Communications.

[44]  E. Rodriguez,et al.  Strong anisotropy in nearly ideal tetrahedral superconducting FeS single crystals , 2015, 1512.01245.

[45]  Yufeng Li,et al.  Multiband superconductivity and large anisotropy in FeS crystals , 2015, 1511.08716.

[46]  M. X. Wang,et al.  Nodal superconductivity in FeS: Evidence from quasiparticle heat transport , 2015, 1511.07717.

[47]  T. Shibauchi,et al.  Critical current density, vortex dynamics, and phase diagram of single-crystal FeSe , 2015, 1510.05753.

[48]  D. Johrendt,et al.  Structural transition and superconductivity in hydrothermally synthesized FeX (X = S, Se). , 2015, Chemical communications.

[49]  X. H. Chen,et al.  Evolution of High-Temperature Superconductivity from a Low-T_{c} Phase Tuned by Carrier Concentration in FeSe Thin Flakes. , 2015, Physical review letters.

[50]  X. Lou,et al.  Anomalous correlation effects and unique phase diagram of electron-doped FeSe revealed by photoemission spectroscopy , 2015, Nature Communications.

[51]  T. Wolf,et al.  Suppression of orbital ordering by chemical pressure in FeSe1-xSx , 2015, 1508.05016.

[52]  Fuqiang Huang,et al.  Observation of Superconductivity in Tetragonal FeS. , 2015, Journal of the American Chemical Society.

[53]  C. C. Chang,et al.  An overview of the Fe-chalcogenide superconductors , 2015 .

[54]  Q. Xue,et al.  Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. , 2015, Nature materials.

[55]  T. Taen,et al.  Evolution of superconducting and transport properties in annealed FeTe1−xSex (0.1 ≤ x ≤ 0.4) multiband superconductors , 2015, 1502.04284.

[56]  A. Schofield,et al.  Emergence of the nematic electronic state in FeSe , 2015, 1502.02917.

[57]  H. von Löhneysen,et al.  Field-induced superconducting phase of FeSe in the BCS-BEC cross-over , 2014, Proceedings of the National Academy of Sciences.

[58]  Deliang L. Chen,et al.  The growth of 122 and 11 iron-based superconductor single crystals and the influence of doping , 2014 .

[59]  X. H. Chen,et al.  Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe. , 2014, Nature materials.

[60]  W. Zhou,et al.  Bulk Superconductivity in Fe1+yTe0.6Se0.4 Induced by Removal of Excess Fe , 2014, 1405.6818.

[61]  T. Qian,et al.  Evolution from incoherent to coherent electronic states and its implications for superconductivity in FeTe1-xSex , 2014, 1405.1172.

[62]  T. Taen,et al.  Multiband effects and possible Dirac fermions in Fe1+yTe0.6Se0.4 , 2014, 1404.6158.

[63]  T. Taen,et al.  Dynamics and mechanism of oxygen annealing in Fe1+yTe0.6Se0.4 single crystal , 2014, Scientific Reports.

[64]  J. Schmalian,et al.  Nematic order in iron superconductors - who is in the driver's seat? , 2013, 1312.6085.

[65]  D. Van dyck,et al.  Fe-vacancy order and superconductivity in tetragonal β-Fe1-xSe , 2013, Proceedings of the National Academy of Sciences.

[66]  T. Taen,et al.  Bulk Superconductivity in Fe1+yTe1-xSex Induced by Annealing in Se and S Vapor , 2013, 1310.1983.

[67]  M. Fang,et al.  Phase diagram and annealing effect for Fe1+δTe1−xSx single crystals , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[68]  M. Lumsden,et al.  Ferro-orbital ordering transition in iron telluride Fe(1+y)Te. , 2013, Physical review letters.

[69]  B. Buchner,et al.  Unusual band renormalization in the simplest iron-based superconductor FeSe 1 − x , 2013, 1307.1280.

[70]  T. Shibauchi,et al.  A Quantum Critical Point Lying Beneath the Superconducting Dome in Iron Pnictides , 2013, 1304.6387.

[71]  A. Maeda,et al.  Effect of Vacuum Annealing on Superconductivity in Fe(Se,Te) Single Crystals , 2013, 1304.3590.

[72]  T. Wolf,et al.  Lack of coupling between superconductivity and orthorhombic distortion in stoichiometric single-crystalline FeSe , 2013, 1303.2026.

[73]  O. Volkova,et al.  Single crystal growth and characterization of tetragonal FeSe1−x superconductors , 2013 .

[74]  Qiang Li,et al.  High current superconductivity in FeSe0.5Te0.5-coated conductors at 30 tesla , 2013, Nature Communications.

[75]  Takao Watanabe,et al.  Effects of Annealing under Tellurium Vapor for Fe$_{1.03}$Te$_{0.8}$Se$_{0.2}$ Single Crystals , 2012, 1212.6476.

[76]  Z. Hussain,et al.  Measurement of coherent polarons in the strongly coupled antiferromagnetically ordered iron-chalcogenide Fe1.02Te using angle-resolved photoemission spectroscopy. , 2012, Physical review letters.

[77]  H. Hosono,et al.  Iron based superconductors processing and properties , 2012 .

[78]  J. Hu,et al.  Inhomogeneous superconductivity induced by interstitial Fe deintercalation in oxidizing-agent-annealed and HNO3-treated Fe1+y(Te1−xSex) , 2012, 1211.1292.

[79]  H. Takagi,et al.  Evidence for a cos(4φ) modulation of the superconducting energy gap of optimally doped FeTe(0.6)Se(0.4) single crystals using laser angle-resolved photoemission spectroscopy. , 2012, Physical review letters.

[80]  S. Margadonna,et al.  Structure-properties correlations in Fe chalcogenide superconductors. , 2012, Chemical Society reviews.

[81]  Z. R. Yang,et al.  Annealing effects on superconductivity and magnetism in Fe1+yTe1-xSx single crystals , 2012 .

[82]  Q. Xue,et al.  High temperature superconductivity in single unit-cell FeSe films on SrTiO$_{3}$ , 2014 .

[83]  A. Chubukov Pairing mechanism in Fe-based superconductors , 2011, 1110.0052.

[84]  N. Butch,et al.  Chemical control of interstitial iron leading to superconductivity in Fe1+xTe0.7Se0.3 , 2011 .

[85]  P. Hirschfeld,et al.  Gap symmetry and structure of Fe-based superconductors , 2011, 1106.3712.

[86]  S. Billinge,et al.  Synthesis, crystal structure, and magnetism of β-Fe1.00(2)Se1.00(3) single crystals , 2011, 1107.1496.

[87]  R. Birgeneau,et al.  Interplay between magnetism and superconductivity in iron-chalcogenide superconductors: crystal growth and characterizations , 2011, 1104.0695.

[88]  H. Wen,et al.  Materials and Novel Superconductivity in Iron Pnictide Superconductors , 2011 .

[89]  E. Choi,et al.  Thermally activated energy and flux flow Hall effect of Fe1+y(Te1-xSx)z , 2010, 1010.0263.

[90]  M. Nagao,et al.  Superconductivity in oxygen-annealed FeTe1-xSx single crystal , 2010, 1009.3315.

[91]  B. Kang,et al.  Superconducting properties of highly oriented Fe1.03Te0.55Se0.45 with excess Fe , 2010 .

[92]  M. Fang,et al.  Effect of annealing on superconductivity in Fe1+y(Te1−xSx) system , 2010 .

[93]  G. Chen,et al.  Intergrain effects in the AC susceptibility of polycrystalline LaFeAsO_{0.94}F_{0.06}: comparison with cuprate superconductors , 2010, 1005.3965.

[94]  Y. Koike,et al.  Growth, Annealing Effects on Superconducting and Magnetic Properties, and Anisotropy of FeSe1-xTex (0.5≤x≤1) Single Crystals , 2010 .

[95]  A. Savici,et al.  From (pi,0) magnetic order to superconductivity with (pi,pi) magnetic resonance in Fe(1.02)Te(1-x)Se(x). , 2010, Nature materials.

[96]  S. Ji,et al.  Investigation of the spin-glass regime between the antiferromagnetic and superconducting phases in Fe$_{1+y}$Se$_x$Te$_{1-x}$ , 2010, 1003.4525.

[97]  Y. Takano,et al.  A review of Fe-chalcogenide superconductors: the simplest Fe-based superconductor , 2010, 1003.2696.

[98]  J. Warren,et al.  Effects of Excess Fe on Upper Critical Field and Magnetotransport in Fe1+y(Te1−xSx)z , 2010, 1003.2209.

[99]  I. Mazin,et al.  Superconductivity gets an iron boost , 2010, Nature.

[100]  Y. Takano,et al.  Moisture-induced superconductivity in FeTe 0.8 S 0.2 , 2009, 0912.2240.

[101]  E. Bozin,et al.  Magnetism, Superconductivity and Stoichiometry in Single Crystals of Fe1+y(Te1-xSx)z , 2009, 0908.3011.

[102]  K. Yeh,et al.  Superconducting FeSe1−xTex Single Crystals Grown by Optical Zone-Melting Technique , 2009, 0908.2855.

[103]  C. Felser,et al.  Electronic and magnetic phase diagram of beta-Fe(1.01)Se with superconductivity at 36.7 K under pressure. , 2009, Nature materials.

[104]  C. Felser,et al.  Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe(1.01)Se. , 2009, Physical review letters.

[105]  Y. Tsuchiya,et al.  Superconductivity at T_{c}∼14 K in single-crystalline FeTe_{0.61}Se_{0.39} , 2009, 0906.1951.

[106]  M. Green,et al.  Tunable (deltapi, deltapi)-type antiferromagnetic order in alpha-Fe(Te,Se) superconductors. , 2009, Physical review letters.

[107]  E. G. Ponyatovskiĭ,et al.  Effects of pressure-induced phase transitions on superconductivity in single-crystal Fe 1.02 Se , 2009, 0905.3289.

[108]  T. B. Wu,et al.  Growth and Investigation of Crystals of the New Superconductor α-FeSe from KCl Solutions , 2009 .

[109]  T. Perng,et al.  The development of the superconducting PbO-type β-FeSe and related compounds , 2009 .

[110]  J. H. Yang,et al.  Charge-carrier localization induced by excess Fe in the superconductor Fe1+yTe1−xSex , 2009, 0904.0824.

[111]  W. Kwok,et al.  Growth and superconductivity of FeSe$_{x}$ crystals , 2009, 0902.2240.

[112]  A. Sefat,et al.  Bulk Superconductivity at 14 K in Single Crystals of Fe1+yTexSe1-x , 2009, 0902.1519.

[113]  V. Ksenofontov,et al.  Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe , 2008, 0811.1613.

[114]  Y. Takano,et al.  Substitution Effects on FeSe Superconductor , 2008, 0811.1123.

[115]  Y. Takano,et al.  Superconductivity in S-substituted FeTe , 2008, 0811.0711.

[116]  Jiangping Hu,et al.  First-order magnetic and structural phase transitions in Fe1+ySexTe1-x , 2008, 0811.0195.

[117]  Z. R. Yang,et al.  Crystal growth and superconductivity of FeSex , 2008, 0809.1905.

[118]  M. Fang,et al.  Superconductivity close to magnetic instability in Fe ( Se 1 − x Te x ) 0.82 , 2008, 0807.4775.

[119]  F. Hsu,et al.  Superconductivity in the PbO-type structure α-FeSe , 2008, Proceedings of the National Academy of Sciences.

[120]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[121]  T. Kamiya,et al.  Iron-based layered superconductor: LaOFeP. , 2006, Journal of the American Chemical Society.

[122]  N. Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[123]  H. Okamoto The fese (ironselenium) system , 1991 .