Exploring Evolving Media Discourse Through Event Cueing

Online news, microblogs and other media documents all contain valuable insight regarding events and responses to events. Underlying these documents is the concept of framing, a process in which communicators act (consciously or unconsciously) to construct a point of view that encourages facts to be interpreted by others in a particular manner. As media discourse evolves, how topics and documents are framed can undergo change, shifting the discussion to different viewpoints or rhetoric. What causes these shifts can be difficult to determine directly; however, by linking secondary datasets and enabling visual exploration, we can enhance the hypothesis generation process. In this paper, we present a visual analytics framework for event cueing using media data. As discourse develops over time, our framework applies a time series intervention model which tests to see if the level of framing is different before or after a given date. If the model indicates that the times before and after are statistically significantly different, this cues an analyst to explore related datasets to help enhance their understanding of what (if any) events may have triggered these changes in discourse. Our framework consists of entity extraction and sentiment analysis as lenses for data exploration and uses two different models for intervention analysis. To demonstrate the usage of our framework, we present a case study on exploring potential relationships between climate change framing and conflicts in Africa.

[1]  David S. Ebert,et al.  Spatiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[2]  Daniel A. Keim,et al.  Visual opinion analysis of customer feedback data , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[3]  Daniel A. Keim,et al.  Visual Sentiment Analysis of RSS News Feeds Featuring the US Presidential Election in 2008 , 2009 .

[4]  Dietram A. Scheufele,et al.  Framing as a theory of media effects , 1999 .

[5]  V. Barnett,et al.  Applied Linear Statistical Models , 1975 .

[6]  Ross Maciejewski,et al.  Visualizing Social Media Sentiment in Disaster Scenarios , 2015, WWW.

[7]  James N. Druckman,et al.  F RAMING T HEORY , 2007 .

[8]  David Gotz,et al.  Exploring Flow, Factors, and Outcomes of Temporal Event Sequences with the Outflow Visualization , 2012, IEEE Transactions on Visualization and Computer Graphics.

[9]  Amy X. Zhang,et al.  Identifying and Analyzing Moral Evaluation Frames in Climate Change Blog Discourse , 2014, ICWSM.

[10]  R HruschkaEduardo,et al.  Tweet sentiment analysis with classifier ensembles , 2014 .

[11]  Heidrun Schumann,et al.  Visualization of Time-Oriented Data , 2011, Human-Computer Interaction Series.

[12]  Daniel A. Keim,et al.  EventRiver: Visually Exploring Text Collections with Temporal References , 2012, IEEE Transactions on Visualization and Computer Graphics.

[13]  Amy X. Zhang,et al.  Compare Clouds : Visualizing Text C orpora to Compare Media Frames , 2015 .

[14]  Theresa L. Utlaut,et al.  Introduction to Time Series Analysis and Forecasting , 2008 .

[15]  Thomas Ertl,et al.  ScatterBlogs : GeoSpatial Document Analysis VAST 2011 Mini Challenge 1 Award : “ Unique Integration of Tag Clouds in Geospatial Visualizations , 2011 .

[16]  Nicholas Diakopoulos,et al.  Visual Analytics of Media Frames in Online News and Blogs , 2013 .

[17]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[18]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[19]  George G. Robertson,et al.  Narratives: A visualization to track narrative events as they develop , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[20]  Brent J. Hecht,et al.  NewsViews: an automated pipeline for creating custom geovisualizations for news , 2014, CHI.

[21]  Daniel A. Keim,et al.  Story Tracker: Incremental visual text analytics of news story development , 2013, Inf. Vis..

[22]  Nicholas Diakopoulos,et al.  Contextifier: automatic generation of annotated stock visualizations , 2013, CHI.

[23]  Ben Shneiderman,et al.  LifeFlow: visualizing an overview of event sequences , 2011, CHI.

[24]  David Gotz,et al.  DecisionFlow: Visual Analytics for High-Dimensional Temporal Event Sequence Data , 2014, IEEE Transactions on Visualization and Computer Graphics.

[25]  Jing Yang,et al.  VAET: A Visual Analytics Approach for E-Transactions Time-Series , 2014, IEEE Transactions on Visualization and Computer Graphics.

[26]  William Ribarsky,et al.  HierarchicalTopics: Visually Exploring Large Text Collections Using Topic Hierarchies , 2013, IEEE Transactions on Visualization and Computer Graphics.

[27]  David S. Ebert,et al.  A correlative analysis process in a visual analytics environment , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[28]  Ben Shneiderman,et al.  Exploring Point and Interval Event Patterns: Display Methods and Interactive Visual Query , 2012 .

[29]  Robert M. Entman,et al.  Framing: Toward Clarification of a Fractured Paradigm , 1993 .

[30]  Jarke J. van Wijk,et al.  Cluster and Calendar Based Visualization of Time Series Data , 1999, INFOVIS.

[31]  Silvia Miksch,et al.  Qualizon graphs: space-efficient time-series visualization with qualitative abstractions , 2014, AVI.

[32]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[33]  Min Chen,et al.  Analyzing high-dimensional multivaríate network links with integrated anomaly detection, highlighting and exploration , 2014, 2014 IEEE Conference on Visual Analytics Science and Technology (VAST).

[34]  Daniel A. Keim,et al.  CloudLines: Compact Display of Event Episodes in Multiple Time-Series , 2011, IEEE Transactions on Visualization and Computer Graphics.

[35]  Daniel A. Keim,et al.  State-of-the-Art Report of Visual Analysis for Event Detection in Text Data Streams , 2014, EuroVis.

[36]  Thomas Ertl,et al.  Spatiotemporal anomaly detection through visual analysis of geolocated Twitter messages , 2012, 2012 IEEE Pacific Visualization Symposium.

[37]  Baining Guo,et al.  TopicPanorama: A Full Picture of Relevant Topics , 2014, IEEE Transactions on Visualization and Computer Graphics.

[38]  Silvia Miksch,et al.  Visual Analytics for Model Selection in Time Series Analysis , 2013, IEEE Transactions on Visualization and Computer Graphics.

[39]  Welch Bl THE GENERALIZATION OF ‘STUDENT'S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED , 1947 .

[40]  William Ribarsky,et al.  LeadLine: Interactive visual analysis of text data through event identification and exploration , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[41]  Thomas Ertl,et al.  ScatterBlogs: Geo-spatial document analysis , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[42]  Frank D. W. Witmer,et al.  Effects of temperature and precipitation variability on the risk of violence in sub-Saharan Africa, 1980–2012 , 2014, Proceedings of the National Academy of Sciences.

[43]  Estevam R. Hruschka,et al.  Tweet sentiment analysis with classifier ensembles , 2014, Decis. Support Syst..

[44]  D. Snow,et al.  Framing Processes and Social Movements: An Overview and Assessment , 2000 .

[45]  J. Brada,et al.  Economic Reform in Hungary: An Overview and Assessment , 1989 .