A new construction for Z-cyclic whist tournaments

In this paper, a new construction for Z-cyclic whist tournaments is given. The known existence results for both Z-cyclic whist tournaments and Z-cyclic triplewhist tournaments are extended.

[1]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[2]  I. Anderson Combinatorial Designs and Tournaments , 1998 .

[3]  Clement W. H. Lam,et al.  Some new triplewhist tournaments TWh(v) , 2003, J. Comb. Theory, Ser. A.

[4]  E. H. Moore,et al.  Tactical Memoranda I-III , 1896 .

[5]  Masakazu Jimbo,et al.  On a composition of cyclic 2-designs , 1983, Discret. Math..

[6]  Norman J. Finizio Z‐cyclic triplewhist tournaments—The noncompatible case, part I , 1997 .

[7]  Norman J. Finizio One frame and several new infinite families of Z-cyclic whist designs , 2004, Discret. Math..

[8]  R. Julian R. Abel,et al.  Directed-ordered whist tournaments and (v, 5, 1) difference families: existence results and some new classes of Z-cyclic solutions , 2004, Discret. Appl. Math..

[9]  L. Zhu,et al.  On the existence of triplewhist tournaments TWh(v) , 1997 .

[10]  Hanfried Lenz,et al.  Design theory , 1985 .

[11]  Norman J. Finizio A representation theorem and Z-cyclic whist tournaments , 1995 .

[12]  Ian Anderson,et al.  Triplewhist tournaments that are also Mendelsohn designs , 1997 .

[13]  G. Ge,et al.  Constructions for optimal (v, 4, 1) optical orthogonal codes , 2001, IEEE Trans. Inf. Theory.

[14]  Marco Buratti Existence of Z-Cyclic Triplewhist Tournaments for a Prime Number of Players , 2000, J. Comb. Theory, Ser. A.

[15]  Ian Anderson,et al.  New Product Theorems for Z-Cyclic Whist Tournaments , 1999, J. Comb. Theory, Ser. A.

[16]  Norman J. Finizio,et al.  Some new Z-cyclic whist tournaments , 2000, Discret. Appl. Math..

[17]  R. Baker Factorization of graphs , 1975 .

[18]  Marco Buratti,et al.  Perfect Cayley Designs as Generalizations of Perfect Mendelsohn Designs , 2001, Des. Codes Cryptogr..

[19]  Y. S. Liaw Construction of Z-cyclic triple whist tournaments , 1996 .