High-entropy alloys

Alloying has long been used to confer desirable properties to materials. Typically, it involves the addition of relatively small amounts of secondary elements to a primary element. For the past decade and a half, however, a new alloying strategy that involves the combination of multiple principal elements in high concentrations to create new materials called high-entropy alloys has been in vogue. The multi-dimensional compositional space that can be tackled with this approach is practically limitless, and only tiny regions have been investigated so far. Nevertheless, a few high-entropy alloys have already been shown to possess exceptional properties, exceeding those of conventional alloys, and other outstanding high-entropy alloys are likely to be discovered in the future. Here, we review recent progress in understanding the salient features of high-entropy alloys. Model alloys whose behaviour has been carefully investigated are highlighted and their fundamental properties and underlying elementary mechanisms discussed. We also address the vast compositional space that remains to be explored and outline fruitful ways to identify regions within this space where high-entropy alloys with potentially interesting properties may be lurking.High-entropy alloys have greatly expanded the compositional space for alloy design. In this Review, the authors discuss model high-entropy alloys with interesting properties, the physical mechanisms responsible for their behaviour and fruitful ways to probe and discover new materials in the vast compositional space that remains to be explored.

[1]  Haruyuki Inui,et al.  Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy , 2016, Scientific Reports.

[2]  Dierk Raabe,et al.  Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures , 2016 .

[3]  Bernd Gludovatz,et al.  Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures , 2016, Nature Communications.

[4]  E. George,et al.  Rapid structural and chemical characterization of ternary phase diagrams using synchrotron radiation , 2003 .

[5]  E. George,et al.  Atomic-scale characterization and modeling of 60° dislocations in a high-entropy alloy , 2016 .

[6]  S. Gorsse,et al.  Current and emerging practices of CALPHAD toward the development of high entropy alloys and complex concentrated alloys , 2018, Journal of Materials Research.

[7]  C. Tasan,et al.  Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off , 2016, Nature.

[8]  Tyler J. Harrington,et al.  A new class of high-entropy perovskite oxides , 2018 .

[9]  R C A Laboratories,et al.  The "Multiple-Sample Concept" in Materials Research: Synthesis, Compositional Analysis and Testing of Entire Multicomponent Systems , 1970 .

[10]  H. Stein,et al.  Accelerated atomic-scale exploration of phase evolution in compositionally complex materials , 2018 .

[11]  J. Yeh,et al.  Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys , 2015 .

[12]  E. George,et al.  Atomic displacement in the CrMnFeCoNi high-entropy alloy – A scaling factor to predict solid solution strengthening , 2016 .

[13]  I. Guillot,et al.  Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity , 2017 .

[14]  Yang Wang,et al.  Beyond Atomic Sizes and Hume-Rothery Rules: Understanding and Predicting High-Entropy Alloys , 2015 .

[15]  G. Eggeler,et al.  Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy , 2016 .

[16]  Sebastian Haas,et al.  Entropy Determination of Single-Phase High Entropy Alloys with Different Crystal Structures over a Wide Temperature Range , 2018, Entropy.

[17]  E. George,et al.  Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures , 2019, Acta Materialia.

[18]  Jien-Wei Yeh,et al.  Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy , 2014 .

[19]  J. Avery Critical review. , 2006, The Journal of the Arkansas Medical Society.

[20]  Jinyong Zhang,et al.  High-entropy carbide: A novel class of multicomponent ceramics , 2018, Ceramics International.

[21]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[22]  A. Meden,et al.  Superconductivity in thermally annealed Ta-Nb-Hf-Zr-Ti high-entropy alloys , 2017 .

[23]  N. Stepanov,et al.  Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy , 2015 .

[24]  A. Ludwig,et al.  Development of multifunctional thin films using high-throughput experimentation methods , 2008 .

[25]  E. Holmström,et al.  Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy , 2015 .

[26]  P. Švec,et al.  Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level , 2018, Journal of the European Ceramic Society.

[27]  Jien-Wei Yeh,et al.  Alloy Design Strategies and Future Trends in High-Entropy Alloys , 2013 .

[28]  D. Ponge,et al.  Beating hydrogen with its own weapon: Nano-twin gradients enhance embrittlement resistance of a high-entropy alloy , 2018, Materials Today.

[29]  C. Schwink,et al.  Precision measurements of critical resolved shear stress in CuMn alloys , 1986 .

[30]  E. George,et al.  Phase stability and kinetics of σ-phase precipitation in CrMnFeCoNi high-entropy alloys , 2018, Acta Materialia.

[31]  Charles H. Ward Materials Genome Initiative for Global Competitiveness , 2012 .

[32]  T. Shun,et al.  Formation of ordered/disordered nanoparticles in FCC high entropy alloys , 2010 .

[33]  S. Franger,et al.  Room temperature lithium superionic conductivity in high entropy oxides , 2016 .

[34]  Oleg N. Senkov,et al.  Microstructure and properties of a refractory high-entropy alloy after cold working , 2015 .

[35]  Wei Zhang,et al.  High-Entropy Alloys with a Hexagonal Close-Packed Structure Designed by Equi-Atomic Alloy Strategy and Binary Phase Diagrams , 2014 .

[36]  Fuyang Tian,et al.  Structural stability of NiCoFeCrAlx high-entropy alloy from ab initio theory , 2013 .

[37]  G. Eggeler,et al.  The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy , 2013 .

[38]  Dierk Raabe,et al.  Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial desi , 2012 .

[39]  E. George,et al.  Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures , 2015 .

[40]  G. Eggeler,et al.  On Local Phase Equilibria and the Appearance of Nanoparticles in the Microstructure of Single‐Crystal Ni‐Base Superalloys   , 2016 .

[41]  J. Yeh,et al.  Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys , 2013 .

[42]  H. Sehitoglu,et al.  Critical resolved shear stress for slip and twin nucleation in single crystalline FeNiCoCrMn high entropy alloy , 2017 .

[43]  Hongquan Song,et al.  Thermodynamic properties of refractory high entropy alloys , 2016 .

[44]  I. Karaman,et al.  Twinning in [001]-oriented single crystals of CoCrFeMnNi high-entropy alloy at tensile deformation , 2018 .

[45]  T. G. Nieh,et al.  Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy , 2013 .

[46]  C. Schwink,et al.  Investigations of the yield region of concentrated CuGe and CuZn single crystals—I. Critical resolved shear stress, slip line formation and the true strain rate , 1977 .

[47]  I. Guillot,et al.  Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy , 2015 .

[48]  G. Chin,et al.  Formation of deformation twins in f.c.c. crystals , 1973 .

[49]  C. M. Handley,et al.  Phase stability and distortion in high-entropy oxides , 2017 .

[50]  H. Sehitoglu,et al.  Slip nucleation in single crystal FeNiCoCrMn high entropy alloy , 2016 .

[51]  Ji-Cheng Zhao Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationships , 2006 .

[52]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[53]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[54]  E. George,et al.  Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi , 2017 .

[55]  William A. Curtin,et al.  Theory of strengthening in fcc high entropy alloys , 2016 .

[56]  N. Jones,et al.  High-entropy alloys: a critical assessment of their founding principles and future prospects , 2016 .

[57]  A. Kuznetsov,et al.  Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system , 2014 .

[58]  N. Stepanov,et al.  Aging behavior of the HfNbTaTiZr high entropy alloy , 2018 .

[59]  J. Yeh,et al.  Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements , 2005 .

[60]  C. Tasan,et al.  Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System , 2014 .

[61]  Dierk Raabe,et al.  Combinatorial Alloy Design by Laser Additive Manufacturing , 2017 .

[62]  Thierry Chauveau,et al.  Microstructure of a near-equimolar refractory high-entropy alloy , 2014 .

[63]  C. Tasan,et al.  Design of a twinning-induced plasticity high entropy alloy , 2015 .

[64]  Andreas Ostendorf,et al.  Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends , 2019, Additive Manufacturing.

[65]  T. Shun,et al.  Multi‐Principal‐Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating , 2004 .

[66]  P. Mayrhofer,et al.  High-entropy ceramic thin films; A case study on transition metal diborides , 2018, 1802.10260.

[67]  D. Raabe,et al.  Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy , 2017, Scientific Reports.

[68]  A. van de Walle,et al.  Institute of Physics Publishing Modelling and Simulation in Materials Science and Engineering Self-driven Lattice-model Monte Carlo Simulations of Alloy Thermodynamic Properties and Phase Diagrams , 2002 .

[69]  Gunther Eggeler,et al.  Microstructural evolution of a CoCrFeMnNi high-entropy alloy after swaging and annealing , 2015 .

[70]  Douglas L. Irving,et al.  Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy , 2013 .

[71]  E. George,et al.  Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries , 2014 .

[72]  Paul R. C. Kent,et al.  Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys , 2015 .

[73]  Ji-Jung Kai,et al.  Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy , 2017 .

[74]  S. Mahajan Twin-slip and twin-twin interactions in Mo-35 at. % Re alloy , 1971 .

[75]  Zhimei Sun,et al.  Effect of the Composition on the Structure of Cr‐Al‐C Investigated by Combinatorial Thin Film Synthesis and ab Initio Calculations , 2004 .

[76]  R. Orrú,et al.  Novel processing route for the fabrication of bulk high-entropy metal diborides , 2019, Scripta Materialia.

[77]  C. Woodward,et al.  Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy , 2012, Journal of Materials Science.

[78]  G. Eggeler,et al.  Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy , 2015 .

[79]  Oleg N. Senkov,et al.  Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys , 2014 .

[80]  Dierk Raabe,et al.  From High‐Entropy Alloys to High‐Entropy Steels , 2015 .

[81]  D. Raabe,et al.  Deformation-Driven Bidirectional Transformation Promotes Bulk Nanostructure Formation in a Metastable Interstitial High Entropy Alloy , 2019, Acta Materialia.

[82]  C. Tasan,et al.  Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys , 2015 .

[83]  J. Yeh,et al.  Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining , 2016 .

[84]  E. George,et al.  Thermal activation parameters of plastic flow reveal deformation mechanisms in the CrMnFeCoNi high-entropy alloy , 2018 .

[85]  R. Arróyave,et al.  Probing the entropy hypothesis in highly concentrated alloys , 2018 .

[86]  Hongbin Bei,et al.  High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi , 2016, Nature Communications.

[87]  Jonathan D. Miller,et al.  Accelerated exploration of multi-principal element alloys for structural applications , 2015 .

[88]  M. Kaufman,et al.  The use of diffusion multiples to examine the compositional dependence of phase stability and hardness of the Co-Cr-Fe-Mn-Ni high entropy alloy system , 2016 .

[89]  H. Bei,et al.  Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys , 2013 .

[90]  Jien-Wei Yeh,et al.  Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys , 2015 .

[91]  J. Kao,et al.  Effects of deposition parameters on the structure and mechanical properties of high-entropy alloy nitride films , 2018 .

[92]  D. Choudhuri,et al.  A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties , 2016 .

[93]  Jinyuan Yan,et al.  Polymorphism in a high-entropy alloy , 2017, Nature Communications.

[94]  Fei Wang,et al.  Effect of Co addition on crystal structure and mechanical properties of Ti0.5CrFeNiAlCo high entropy alloy , 2008 .

[95]  S. Franger,et al.  Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides , 2017 .

[96]  Y. Sakka,et al.  High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC , 2019, Scripta Materialia.

[97]  U. Kattner,et al.  An understanding of high entropy alloys from phase diagram calculations , 2014 .

[98]  Y. Zhou,et al.  Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties , 2007 .

[99]  Qingsong Wang,et al.  High entropy oxides for reversible energy storage , 2018, Nature Communications.

[100]  D. Raabe,et al.  Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity , 2017 .

[101]  R. Malak,et al.  Efficient exploration of the High Entropy Alloy composition-phase space , 2018 .

[102]  I. Guillot,et al.  On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy , 2015 .

[103]  A. Pilchak,et al.  CALPHAD-aided development of quaternary multi-principal element refractory alloys based on NbTiZr , 2019, Journal of Alloys and Compounds.

[104]  D. Raabe,et al.  In-situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy , 2018 .

[105]  Dierk Raabe,et al.  Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, , 2013 .

[106]  T. Nieh,et al.  Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures , 2014 .

[107]  C. Tasan,et al.  A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior , 2017 .

[108]  Chuan Zhang,et al.  Computational Thermodynamics Aided High-Entropy Alloy Design , 2012, JOM.

[109]  D. Raabe,et al.  Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties , 2017, JOM.

[110]  D. Raabe,et al.  Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy , 2019, Acta Materialia.

[111]  R. Ritchie,et al.  Bioinspired structural materials. , 2014, Nature Materials.

[112]  M. Widom,et al.  Thermodynamics of concentrated solid solution alloys , 2017 .

[113]  Y. Champion,et al.  Insights into the phase diagram of the CrMnFeCoNi high entropy alloy , 2015 .

[114]  D. Raabe,et al.  Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one , 2015 .

[115]  Andrea Widener,et al.  Materials Genome Initiative , 2014 .

[116]  Dierk Raabe,et al.  Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes , 2018, Nature.

[117]  Dingshun Yan,et al.  Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength , 2018, Proceedings of the National Academy of Sciences.

[118]  D. Ponge,et al.  Ultrastrong Medium‐Entropy Single‐Phase Alloys Designed via Severe Lattice Distortion , 2018, Advanced materials.

[119]  W. J. Weber,et al.  Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy. , 2017, Physical review letters.

[120]  C. Woodward,et al.  Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint) , 2011 .

[121]  D. Raabe,et al.  Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy , 2017 .

[122]  D. Cahill,et al.  High-throughput diffusion multiples , 2005 .

[123]  M. Feuerbacher,et al.  Hexagonal High-entropy Alloys , 2014, 1408.0100.

[124]  H. Sehitoglu,et al.  Hardening by slip-twin and twin-twin interactions in FeMnNiCoCr , 2018, Acta Materialia.

[125]  Z. Jagličić,et al.  Discovery of a superconducting high-entropy alloy. , 2014, Physical review letters.

[126]  R. Ritchie,et al.  Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys , 2018, Proceedings of the National Academy of Sciences.

[127]  Marc A. Meyers,et al.  THE ONSET OF TWINNING IN METALS: A CONSTITUTIVE DESCRIPTION , 2001 .

[128]  Reinhard Pippan,et al.  Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation , 2015 .

[129]  G. Pharr,et al.  PVD synthesis and high-throughput property characterization of Ni–Fe–Cr alloy libraries , 2004 .

[130]  Huahai Mao,et al.  TCHEA1: A Thermodynamic Database Not Limited for “High Entropy” Alloys , 2017 .

[131]  Jacob L. Jones,et al.  Entropy-stabilized oxides , 2015, Nature Communications.

[132]  I. Guillot,et al.  Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy , 2016 .

[133]  B. S. Murty,et al.  Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy , 2011 .

[134]  Zijiao Zhang,et al.  Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy , 2017, Nature Communications.

[135]  H. Sheng,et al.  Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways , 2019, Nature Communications.

[136]  Robert O. Ritchie,et al.  Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi , 2015, Nature Communications.

[137]  I. Guillot,et al.  New structure in refractory high-entropy alloys , 2014 .

[138]  P. Liaw,et al.  Refractory high-entropy alloys , 2010 .

[139]  I. Karaman,et al.  Orientation dependence of twinning in single crystalline CoCrFeMnNi high-entropy alloy , 2017 .

[140]  C. Woodward,et al.  Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy , 2011 .

[141]  Dierk Raabe,et al.  Combinatorial metallurgical synthesis and processing of high-entropy alloys , 2018, Journal of Materials Research.

[142]  D. Raabe,et al.  Microstructural and mechanical characterization of an equiatomic YGdTbDyHo high entropy alloy with hexagonal close-packed structure , 2018, Acta Materialia.

[143]  C. Tasan,et al.  Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design , 2015 .

[144]  D. Choudhuri,et al.  A Combinatorial Approach for Assessing the Magnetic Properties of High Entropy Alloys: Role of Cr in AlCoxCr1–xFeNi   , 2017 .

[145]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[146]  Stéphane Gorsse,et al.  About the Reliability of CALPHAD Predictions in Multicomponent Systems , 2018, Entropy.

[147]  C. Tasan,et al.  Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys , 2017, Scientific Reports.

[148]  Peter G. Schultz,et al.  A Combinatorial Approach to Materials Discovery , 1995, Science.

[149]  Brian Cantor,et al.  Multicomponent and High Entropy Alloys , 2014, Entropy.

[150]  C. Schwink,et al.  Quantitative analysis of solution hardening in selected copper alloys , 1987 .

[151]  A. G. McGregor,et al.  Predicting the formation and stability of single phase high-entropy alloys , 2016 .

[152]  S. Franger,et al.  Colossal dielectric constant in high entropy oxides , 2016, 1602.07842.

[153]  J. Schneider,et al.  Ab initio-guided design of twinning-induced plasticity steels , 2016 .

[154]  H. Kim,et al.  Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy , 2017, Nature Communications.

[155]  P. Haasen Plastic deformation of nickel single crystals at low temperatures , 1958 .

[156]  S. S. Nene,et al.  Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy , 2017, Scientific Reports.

[157]  Y. C. Wu,et al.  Rare-earth high entropy alloys with hexagonal close-packed structure , 2018, Journal of Applied Physics.

[158]  S. Ulrich,et al.  Combinatorial exploration of the High Entropy Alloy System Co-Cr-Fe-Mn-Ni , 2017 .

[159]  William A. Curtin,et al.  Solute strengthening in random alloys , 2017 .

[160]  Ke An,et al.  Phase‐Transformation Ductilization of Brittle High‐Entropy Alloys via Metastability Engineering , 2017, Advanced materials.

[161]  L. Battezzati,et al.  Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems , 2014 .

[162]  D. Raabe,et al.  Multistage strain hardening through dislocation substructure and twinning in a high strength and duc , 2012 .

[163]  Qing Chen,et al.  Database development and Calphad calculations for high entropy alloys: Challenges, strategies, and tips , 2017 .

[164]  Howard Stone,et al.  Research data supporting: "Precipitation in the Equiatomic High-Entropy Alloy CrMnFeCoNi" , 2015 .

[165]  G. Hilmas,et al.  Synthesis of single-phase high-entropy carbide powders , 2019, Scripta Materialia.

[166]  H. Fraser,et al.  Laser deposition of compositionally graded titanium–vanadium and titanium–molybdenum alloys , 2003 .

[167]  L. Nyholm,et al.  Synthesis and characterization of multicomponent (CrNbTaTiW)C films for increased hardness and corrosion resistance , 2018, Materials & Design.

[168]  H. Sehitoglu,et al.  Mechanisms of plastic deformation in [1¯11]-oriented single crystals of FeNiMnCrCo high entropy alloy , 2016 .

[169]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[170]  I. Guillot,et al.  The fcc solid solution stability in the Co-Cr-Fe-Mn-Ni multi-component system , 2017 .

[171]  R. Pascual,et al.  Stress equivalence of solution hardening , 1972 .

[172]  Nikita Stepanov,et al.  High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn high entropy alloy , 2015 .

[173]  F. Frank,et al.  On deformation by twinning , 1955 .

[174]  A. Ludwig,et al.  Atomic-scale investigation of fast oxidation kinetics of nanocrystalline CrMnFeCoNi thin films , 2018, Journal of Alloys and Compounds.

[175]  Yong Zhang,et al.  A hexagonal close-packed high-entropy alloy: The effect of entropy , 2016 .

[176]  C. Persson,et al.  Alloy design for intrinsically ductile refractory high-entropy alloys , 2016 .

[177]  N. Schell,et al.  Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties , 2018 .

[178]  V. F. Zackay,et al.  Rapid Method for Determining Ternary‐Alloy Phase Diagrams , 1965 .

[179]  G. Pharr,et al.  Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures , 2014 .

[180]  Hideji Suzuki Solid Solution Hardening , 1979 .

[181]  E. George,et al.  Tensile properties of high- and medium-entropy alloys , 2013 .

[182]  D. Raabe,et al.  Bidirectional Transformation Enables Hierarchical Nanolaminate Dual‐Phase High‐Entropy Alloys , 2018, Advanced materials.

[183]  Tyler J. Harrington,et al.  Phase stability and mechanical properties of novel high entropy transition metal carbides , 2019, Acta Materialia.

[184]  H. Sehitoglu,et al.  Experimental determination of latent hardening coefficients in FeMnNiCoCr , 2018, International Journal of Plasticity.

[185]  J. Friedel CHAPTER VI – IMPERFECT DISLOCATIONS , 1964 .

[186]  D. Raabe,et al.  Strain Rate Sensitivity of a TRIP-Assisted Dual-Phase High-Entropy Alloy , 2018, Front. Mater..

[187]  J. Yeh,et al.  High-Entropy Alloys: A Critical Review , 2014 .