Optimal line packings from association schemes

We provide a general recipe that leverages association schemes to construct optimal packings of lines through the origin. We apply this recipe to association schemes corresponding to general Gelfand pairs before focusing on the special case of group schemes. In this setting, optimal line packings are naturally characterized using representation theory, which in turn leads to necessary integrality conditions for the existence of equiangular central group frames. We conclude with an infinite family of optimal line packings using the group schemes associated with certain Suzuki 2-groups. Notably, this is the first known infinite family of equiangular lines arising from nonabelian groups.

[1]  G. Higman Suzuki $2$-groups , 1963 .

[2]  H. W. Turnbull,et al.  Correspondence of Isaac Newton , 1961, Nature.

[3]  A. Calderbank,et al.  Z4‐Kerdock Codes, Orthogonal Spreads, and Extremal Euclidean Line‐Sets , 1997 .

[4]  Abraham Lempel,et al.  Matrix Factorization Over GF(2) and Trace-Orthogonal Bases of GF(2n) , 1975, SIAM J. Comput..

[5]  K. Ross,et al.  Hypergroups and Signed Hypergroups , 1998 .

[6]  P. Delsarte AN ALGEBRAIC APPROACH TO THE ASSOCIATION SCHEMES OF CODING THEORY , 2011 .

[7]  Cunsheng Ding,et al.  A Generic Construction of Complex Codebooks Meeting the Welch Bound , 2007, IEEE Transactions on Information Theory.

[8]  Dustin G. Mixon,et al.  Equiangular tight frames with centroidal symmetry , 2015, 1509.04059.

[9]  Eiichi Bannai,et al.  Association Schemes and Fusion Algebras (An Introduction) , 1993 .

[10]  M. Liebeck,et al.  Representations and Characters of Groups , 1995 .

[11]  G. Folland A course in abstract harmonic analysis , 1995 .

[12]  P. Tammes On the origin of number and arrangement of the places of exit on the surface of pollen-grains , 1930 .

[13]  Dustin G. Mixon,et al.  The Road to Deterministic Matrices with the Restricted Isometry Property , 2012, Journal of Fourier Analysis and Applications.

[14]  Akihide Hanaki,et al.  A condition on lengths of conjugacy classes and character degrees , 1996 .

[15]  E. O'Brien,et al.  Handbook of Computational Group Theory , 2005 .

[16]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[17]  A. J. Scott,et al.  Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .

[18]  Vivek K Goyal,et al.  Quantized Frame Expansions with Erasures , 2001 .

[19]  Babak Hassibi,et al.  Low-Coherence Frames From Group Fourier Matrices , 2015, IEEE Transactions on Information Theory.

[20]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[21]  Thomas L. Marzetta,et al.  Systematic design of unitary space-time constellations , 2000, IEEE Trans. Inf. Theory.

[22]  N. J. A. Sloane,et al.  Packing Lines, Planes, etc.: Packings in Grassmannian Spaces , 1996, Exp. Math..

[23]  Akihide Hanaki,et al.  Groups with some combinatorial properties , 1997 .

[24]  Joseph W. Iverson Frames generated by compact group actions , 2015, 1509.06802.

[25]  Akihide Hanaki,et al.  CLASSIFICATION OF ASSOCIATION SCHEMES WITH 18 AND 19 VERTICES , 1998 .

[26]  Dustin G. Mixon,et al.  Tables of the existence of equiangular tight frames , 2015, ArXiv.

[27]  Joseph M. Renes Equiangular tight frames from Paley tournaments , 2007 .

[28]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[29]  Thomas Strohmer,et al.  A note on equiangular tight frames , 2008 .

[30]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[31]  Thomas Strohmer,et al.  GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.