Pose Estimation in Conformal Geometric Algebra Part II: Real-Time Pose Estimation Using Extended Feature Concepts
暂无分享,去创建一个
[1] Homer H. Chen. Pose Determination from Line-to-Plane Correspondences: Existence Condition and Closed-Form Solutions , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[2] Gerald Sommer,et al. Geometric Computing with Clifford Algebras , 2001, Springer Berlin Heidelberg.
[3] G. Sommer. Geometric computing with Clifford algebras: theoretical foundations and applications in computer vision and robotics , 2001 .
[4] Jean Gallier,et al. Geometric Methods and Applications: For Computer Science and Engineering , 2000 .
[5] Jan J. Koenderink,et al. Algebraic Frames for the Perception-Action Cycle , 1997, Lecture Notes in Computer Science.
[6] Richard M. Murray,et al. A Mathematical Introduction to Robotic Manipulation , 1994 .
[7] J. Beveridge. Local search algorithms for geometric object recognition: optimal correspondence and pose , 1993 .
[8] J. Denavit,et al. A kinematic notation for lower pair mechanisms based on matrices , 1955 .
[9] Eduardo Bayro-Corrochano,et al. Kinematics of robot manipulators in the motor algebra , 2001 .
[10] David Hestenes,et al. Generalized homogeneous coordinates for computational geometry , 2001 .
[11] Gerald Sommer,et al. Algebraic Aspects of Designing Behaviour Based Systems , 1997, AFPAC.
[12] Wilhelm Blaschke,et al. Kinematik und Quaternionen , 1960 .
[13] Robert B. Fisher,et al. A Comparison of Four Algorithms for Estimating 3-D Rigid Transformations , 1995, BMVC.
[14] Robert J. Holt,et al. Uniqueness of Solutions to Structure and Motion from Combinations of Point and Line Correspondences , 1996, J. Vis. Commun. Image Represent..
[15] Michael Felsberg,et al. The Multidimensional Isotropic Generalization of Quadrature Filters in Geometric Algebra , 2000, AFPAC.
[16] Joan Lasenby,et al. A novel axiomatic derivation of geometric algebra , 1999 .
[17] Michael Werman,et al. Pose Estimation by Fusing Noisy Data of Di � erent Dimensions , 2007 .
[18] Bodo Rosenhahn,et al. Pose Estimation of 3D Free-Form Contours , 2005, International Journal of Computer Vision.
[19] Bodo Rosenhahn,et al. Pose Estimation Using Geometric Constraints , 2000, Theoretical Foundations of Computer Vision.
[20] Radu Horaud,et al. Object pose from 2-D to 3-D point and line correspondences , 1995, International Journal of Computer Vision.
[21] Richard A. Volz,et al. Estimating 3-D location parameters using dual number quaternions , 1991, CVGIP Image Underst..
[22] Bodo Rosenhahn,et al. Constraint Equations for 2D-3D Pose Estimation in Conformal Geometric Algebra , 2000 .
[23] H. Brauner. W. Blaschke, Kinematik und Quaternionen. (Mathematische Monographien) VIII + 84 S. Berlin 1960. Deutscher Verlag der Wissenschaften. Preis geb. DM 20,40 , 1962 .
[24] Alessandro Chiuso,et al. Visual tracking of points as estimation on the unit sphere , 1997, Block Island Workshop on Vision and Control.
[25] O. Faugeras. Stratification of three-dimensional vision: projective, affine, and metric representations , 1995 .
[26] D. Hestenes,et al. Projective geometry with Clifford algebra , 1991 .
[27] David G. Lowe,et al. Three-Dimensional Object Recognition from Single Two-Dimensional Images , 1987, Artif. Intell..
[28] Bodo Rosenhahn,et al. Pose Estimation in Conformal Geometric Algebra Part I: The Stratification of Mathematical Spaces , 2005, Journal of Mathematical Imaging and Vision.
[29] Sebastian Weik,et al. Hierarchical 3D Pose Estimation for Articulated Human Body Models from a Sequence of Volume Data , 2001, RobVis.
[30] Tristan Needham,et al. Visual Complex Analysis , 1997 .
[31] Bodo Rosenhahn,et al. Monocular Pose Estimation of Kinematic Chains , 2002 .
[32] William H. Press,et al. Numerical recipes , 1990 .
[33] Jitendra Malik,et al. Tracking people with twists and exponential maps , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).
[34] David Hestenes,et al. New algebraic tools for classical geometry , 2001 .
[35] Kostas Daniilidis,et al. Hand-Eye Calibration Using Dual Quaternions , 1999, Int. J. Robotics Res..
[36] Leo Dorst,et al. Honing geometric algebra for its use in the computer sciences , 2001 .
[37] Robert B. Fisher,et al. Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.
[38] Alexa Hauck,et al. Hierarchical recognition of articulated objects from single perspective views , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[39] Bodo Rosenhahn,et al. Tracking with a Novel Pose Estimation Algorithm , 2001, RobVis.
[40] Fergal Shevlin,et al. Analysis of orientation problems using Plucker lines , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).
[41] Ales Ude,et al. Filtering in a unit quaternion space for model-based object tracking , 1999, Robotics Auton. Syst..
[42] Gerald Sommer,et al. Algebraic Frames for the Perception-Action Cycle , 2000, Lecture Notes in Computer Science.
[43] William Grimson,et al. Object recognition by computer - the role of geometric constraints , 1991 .