Indications of Dynamic Effects on Scaling Relationships Between Channel Sinuosity and Vegetation Patch Size Across a Salt Marsh Platform

Salt marshes are important coastal areas that consist of a vegetated intertidal marsh platform and a drainage network of tidal channels. How salt marshes and their drainage networks develop is not fully understood, but it has been shown that the biogeomorphic interactions and feedbacks between vegetation development and channel formation play an important role. We examined the relationships among tidal channel sinuosity, marsh roughness, vegetation type (pioneer, Elymus athericus or Phragmites australis), and patch size at different spatial scales using a high‐resolution vegetation map (derived from aerial photography) and lower‐resolution satellite imagery processed with linear spectral mixture analysis. The patch‐size distribution in all vegetation types corresponded to a power law, suggesting the presence of self‐organizational processes. While small vegetation patches are more dominant in pioneer vegetation, they were present in all vegetation types. The largest patch size is restricted to E. athericus. We observed an inverse logarithmic relationship between channel sinuosity and vegetation patch size in all vegetation types. The fact that this relationship is observed in both pioneer and later successional stages suggests that after the establishment of a drainage network in the dynamic pioneer stages of salt marsh development, the later stages of salt marsh succession largely inherit the meandering pattern of the early successional stages. Our study confirms recent evidence that no significant changes in the specific features of tidal channel networks (e.g., channel width, drainage density, and efficiency) take place during the later stages of salt marsh development.

[1]  Patrick Meire,et al.  Flow interaction with dynamic vegetation patches: Implications for biogeomorphic evolution of a tidal landscape , 2011 .

[2]  Sergio Fagherazzi,et al.  Overestimation of marsh vulnerability to sea level rise , 2016 .

[3]  S. Temmerman,et al.  Self-organised patchiness and scale-dependent bio-geomorphic feedbacks in aquatic river vegetation , 2012 .

[4]  M. Kirwan,et al.  Ecological and morphological response of brackish tidal marshland to the next century of sea level rise: Westham Island, British Columbia , 2008 .

[5]  Jon French,et al.  Tidal marsh sedimentation and resilience to environmental change: Exploratory modelling of tidal, sea-level and sediment supply forcing in predominantly allochthonous systems , 2006 .

[6]  ScienceDirect Physics and chemistry of the earth. Parts A/B/C , 2002 .

[7]  Andrea Rinaldo,et al.  Spontaneous tidal network formation within a constructed salt marsh: Observations and morphodynamic modelling , 2007 .

[8]  Peter M. J. Herman,et al.  Spatial flow and sedimentation patterns within patches of epibenthic structures: Combining field, flume and modelling experiments , 2007 .

[9]  J. A. Fleming,et al.  AMERICAN GEOPHYSICAL UNION. , 1945, Science.

[10]  J. French,et al.  Numerical simulation of vertical marsh growth and adjustment to accelerated sea‐level rise, North Norfolk, U.K. , 1993 .

[11]  Andrea Rinaldo,et al.  Tidal network ontogeny: Channel initiation and early development , 2005 .

[12]  Andrea Rinaldo,et al.  On the tidal prism–channel area relations , 2010 .

[13]  J. Constantine,et al.  Generic theory for channel sinuosity , 2013, Proceedings of the National Academy of Sciences.

[14]  Chen Wang,et al.  Does biogeomorphic feedback lead to abrupt shifts between alternative landscape states?: An empirical study on intertidal flats and marshes , 2013 .

[15]  P. Frazier,et al.  Water body detection and delineation with Landsat TM data. , 2000 .

[16]  J. van de Koppel,et al.  Top-down control inhibits spatial self-organization of a patterned landscape. , 2011, Ecology.

[17]  Richard C. Thompson,et al.  Modeling uncertainty in estuarine system by means of combined approach of optical and radar remote sensing , 2014 .

[18]  S. Fagherazzi Self-organization of tidal deltas , 2008, Proceedings of the National Academy of Sciences.

[19]  S. Temmerman,et al.  Interactions between plant traits and sediment characteristics influencing species establishment and scale-dependent feedbacks in salt marsh ecosystems , 2015 .

[20]  S. Temmerman,et al.  Bio‐geomorphic effects on tidal channel evolution: impact of vegetation establishment and tidal prism change , 2013 .

[21]  T. Sun,et al.  A stochastic model for the formation of channel networks in tidal marshes , 2004, Geophysical Research Letters.

[22]  Andrea Rinaldo,et al.  Analysis, synthesis and modelling of high-resolution observations of salt-marsh eco-geomorphological patterns in the Venice lagoon , 2006 .

[23]  Johan van de Koppel,et al.  Regular pattern formation in real ecosystems. , 2008, Trends in ecology & evolution.

[24]  Johan van de Koppel,et al.  Does scale‐dependent feedback explain spatial complexity in salt‐marsh ecosystems? , 2008 .

[25]  Andrea Rinaldo,et al.  Tidal networks: 3. Landscape‐forming discharges and studies in empirical geomorphic relationships , 1999 .

[26]  Correlation scales of digital elevation models in developed coastal environments , 2015 .

[27]  David C. Mason,et al.  Extraction of tidal channel networks from airborne scanning laser altimetry , 2006 .

[28]  Richard A. Wadsworth,et al.  Short-term vegetation succession and erosion identified by airborne remote sensing of Westerschelde salt marshes, The Netherlands , 2004 .

[29]  M. Marani,et al.  The Ecogeomorphology of Tidal Marshes , 2004 .

[30]  Andrea Taramelli,et al.  An effective procedure for EUNIS and Natura 2000 habitat type mapping in estuarine ecosystems integrating ecological knowledge and remote sensing analysis , 2015 .

[31]  J. French,et al.  Hydrodynamics of salt marsh creek systems: Implications for marsh morphological development and material exchange , 1992 .

[32]  R. Forster,et al.  Field spectroscopy of estuarine intertidal habitats , 2006 .

[33]  Johan Oszwald,et al.  Use of bi-Seasonal Landsat-8 Imagery for Mapping Marshland Plant Community Combinations at the Regional Scale , 2015, Wetlands.

[34]  John D. Boon,et al.  On basin hyposmetry and the morphodynamic response of coastal inlet systems , 1981 .

[35]  P. D’Odorico,et al.  Geomorphic structure of tidal hydrodynamics in salt marsh creeks , 2008, Water Resources Research.

[36]  S. Fagherazzi,et al.  Salt marsh vegetation promotes efficient tidal channel networks , 2014, Nature Communications.

[37]  Dirk Lauwaet,et al.  Flow paths of water and sediment in a tidal marsh: Relations with marsh developmental stage and tidal inundation height , 2005 .

[38]  Andrea Taramelli,et al.  Spectral characterization of coastal sediments using Field Spectral Libraries, Airborne Hyperspectral Images and Topographic LiDAR Data (FHyL) , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[39]  Andrea Taramelli,et al.  Temporal evolution of patterns and processes related to subsidence of the coastal area surrounding the Bevano River mouth (Northern Adriatic) – Italy , 2015 .

[40]  Andrea Taramelli,et al.  A new DEM of Italy using SRTM data , 2006 .

[41]  Andrea Taramelli,et al.  Global MODIS Fraction of Green Vegetation Cover for Monitoring Abrupt and Gradual Vegetation Changes , 2018, Remote. Sens..

[42]  Andrea Rinaldo,et al.  Geomorphic signatures of deltaic processes and vegetation: The Ganges‐Brahmaputra‐Jamuna case study , 2013 .

[43]  Andrea Taramelli,et al.  Map of deep seated gravitational slope deformations susceptibility in central Italy derived from SRTM DEM and spectral mixing analysis of the Landsat ETM+ data , 2009 .

[44]  Marcel J. F. Stive,et al.  Windows of opportunity for salt marsh vegetation establishment on bare tidal flats: The importance of temporal and spatial variability in hydrodynamic forcing , 2015 .

[45]  D. Garofalo The influence of wetland vegetation on tidal stream channel migration and morphology , 1980 .

[46]  Raymond Torres,et al.  Geomorphic Analysis of Tidal Creek Networks , 2004 .

[47]  Alessandro Marani,et al.  Salt marsh vegetation radiometry: Data analysis and scaling , 2002 .

[48]  S. Fagherazzi,et al.  The legacy of initial conditions in landscape evolution , 2012 .

[49]  R. Pestrong The development of drainage patterns on tidal marshes , 1965 .

[50]  M. E. J. Newman,et al.  Power laws, Pareto distributions and Zipf's law , 2005 .

[51]  R. Millar Influence of bank vegetation on alluvial channel patterns , 2000 .

[52]  E. Ibrahim,et al.  Suitability of spaceborne multispectral data for inter-tidal sediment characterization: A case study , 2011 .

[53]  A. Rinaldo,et al.  Tidal networks: 2. Watershed delineation and comparative network morphology , 1999 .

[54]  John Robert Lawrence Allen,et al.  Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe , 2000 .

[55]  Andrea Rinaldo,et al.  Landscape evolution in tidal embayments: Modeling the interplay of erosion, sedimentation, and vegetation dynamics , 2006 .

[56]  C. Hladik,et al.  Salt Marsh Elevation and Habitat Mapping Using Hyperspectral and LIDAR Data , 2013 .

[57]  W. Dietrich,et al.  The search for a topographic signature of life , 2006, Nature.

[58]  W. G. Beeftink Vegetation and habitat of the salt marshes and beach plains in the south-western part of the Netherlands , 1966 .

[59]  J. Janssen Monitoring of salt-marsh vegetation by sequential mapping , 2001 .

[60]  M. Marani,et al.  Tidal meander migration and dynamics: A case study from the Venice Lagoon , 2017 .

[61]  A. Brad Murray,et al.  Tidal marshes as disequilibrium landscapes? Lags between morphology and Holocene sea level change , 2008 .

[62]  A. Gillespie,et al.  Topographic Normalization of Landsat TM Images of Forest Based on Subpixel Sun–Canopy–Sensor Geometry , 1998 .

[63]  C. Milesi,et al.  Multi-scale standardized spectral mixture models , 2013 .

[64]  Andrea Rinaldo,et al.  Tidal meanders , 2002 .

[65]  J. Ramirez,et al.  A mechanistic description of the formation and evolution of vegetation patterns , 2012 .

[66]  R. Tiner Wetland Indicators: A Guide to Wetland Formation, Identification, Delineation, Classification, and Mapping, Second Edition , 2016 .

[67]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[68]  Mercedes Pascual,et al.  Cluster size distributions: signatures of self-organization in spatial ecologies. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[69]  S. Temmerman,et al.  Vegetation causes channel erosion in a tidal landscape , 2007 .

[70]  Y. Hayakawa,et al.  The Climatic Signature of Incised River Meanders , 2010, Science.

[71]  Paul E. Johnson,et al.  Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis , 1985 .

[72]  Andrea Rinaldo,et al.  On the drainage density of tidal networks , 2001 .

[73]  Andrea Taramelli,et al.  FHYL: Field spectral libraries, airborne hyperspectral images and topographic and bathymetric LiDAR data for complex coastal mapping , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[74]  Alan R. Gillespie,et al.  Interpretation and topographic compensation of conifer canopy self-shadowing , 2008 .

[75]  Luca Carniello,et al.  Self-organization of shallow basins in tidal flats and salt marshes , 2006 .

[76]  Peter M. J. Herman,et al.  Impacts of salt marsh plants on tidal channel initiation and inheritance , 2013 .

[77]  Paul E. Johnson,et al.  Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site , 1986 .

[78]  Andrea Taramelli,et al.  A Hybrid Power Law Approach for Spatial and Temporal Pattern Analysis of Salt Marsh Evolution , 2017, Journal of Coastal Research.

[79]  D. Johns,et al.  The Salt Marshes of the Dovey Estuary , 1916 .

[80]  Carl T. Friedrichs,et al.  Stability shear stress and equilibrium cross-sectional geometry of sheltered tidal channels , 1995 .

[81]  J. Boon Tidal discharge asymmetry in a salt marsh drainage system1,2 , 1975 .

[82]  C. Lambert,et al.  General description of the Scheldt estuary , 2004, Hydrobiologia.

[83]  A. Rinaldo,et al.  Tidal networks: 1. Automatic network extraction and preliminary scaling features from digital terrain maps , 1999 .

[84]  Luca Carniello,et al.  Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Johan van de Koppel,et al.  Spatial Self‐Organization on Intertidal Mudflats through Biophysical Stress Divergence , 2010, The American Naturalist.

[86]  C. Small Multitemporal analysis of urban reflectance , 2002 .

[87]  Andrea Rinaldo,et al.  The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics , 2009 .

[88]  S. Temmerman,et al.  Ecosystem service delivery in restoration projects : the effect of ecological succession on the benefits of tidal marsh restoration , 2016 .

[89]  M. Marani,et al.  Introduction: the Coupled Evolution of Geomorphological and Ecosystem Structures in Salt Marshes , 2013 .

[90]  C. Friedrichs,et al.  Non-linear tidal distortion in shallow well-mixed estuaries: a synthesis☆ , 1988 .

[91]  Christopher Small,et al.  The Landsat ETM+ spectral mixing space , 2004 .

[92]  Johan van de Koppel,et al.  Self‐Organization and Vegetation Collapse in Salt Marsh Ecosystems , 2004, The American Naturalist.

[93]  E. Valentini,et al.  Remote Sensing Solutions to Monitor Biotic and Abiotic Dynamics in Coastal Ecosystems , 2015 .

[94]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[95]  Patrick Meire,et al.  The Scheldt estuary: a description of a changing ecosystem , 2005, Hydrobiologia.

[96]  Peter M. J. Herman,et al.  Density-dependent linkage of scale-dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica , 2009 .

[97]  S. Silvestri,et al.  Hyperspectral remote sensing of salt marsh vegetation, morphology and soil topography , 2003 .

[98]  David Riaño,et al.  Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types (2003) , 2003, IEEE Trans. Geosci. Remote. Sens..

[99]  Changes in diatom patch-size distribution and degradation in a spatially self-organized intertidal mudflat ecosystem. , 2012, Ecology.

[100]  Giulio Mariotti,et al.  A numerical model for the coupled long‐term evolution of salt marshes and tidal flats , 2010 .

[101]  B. Markham,et al.  Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges , 2003, IEEE Trans. Geosci. Remote. Sens..

[102]  R. Jefferies,et al.  A biotic agent promotes large‐scale catastrophic change in the coastal marshes of Hudson Bay , 2006 .

[103]  S. Fagherazzi,et al.  On the shape and widening of salt marsh creeks , 2001 .

[104]  David P. Callaghan,et al.  Short‐term mudflat dynamics drive long‐term cyclic salt marsh dynamics , 2016 .

[105]  C. Small,et al.  Spatial and temporal dust source variability in northern China identified using advanced remote sensing analysis , 2013 .

[106]  Johan van de Koppel,et al.  Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors , 2012, Reviews of Geophysics.

[107]  J. Pethick Velocity surges and asymmetry in tidal channels , 1980 .

[108]  COMPARISON OF SRTM ELEVATION DATA WITH CARTOGRAPHICALLY DERIVED DEMS IN ITALY , 2008 .

[109]  Todd M. Scanlon,et al.  Positive feedbacks promote power-law clustering of Kalahari vegetation , 2007, Nature.

[110]  Paul E. Johnson,et al.  A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures , 1983 .

[111]  C. Small,et al.  Humans on Earth: Global extents of anthropogenic land cover from remote sensing , 2016 .

[112]  C. Paola,et al.  Effects of vegetation on channel morphodynamics: results and insights from laboratory experiments , 2010 .

[113]  Sergio Fagherazzi,et al.  Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels , 2006 .

[114]  J. Perron,et al.  Biotic origin for Mima mounds supported by numerical modeling , 2014 .

[115]  Christopher Small,et al.  Global cross-calibration of Landsat spectral mixture models , 2016 .

[116]  Chen Wang,et al.  Multiple Stable States and Catastrophic Shifts in Coastal Wetlands: Progress, Challenges, and Opportunities in Validating Theory Using Remote Sensing and Other Methods , 2015, Remote. Sens..

[117]  Eric Pottier,et al.  One year wetland survey investigations from quad-pol RADARSAT-2 time-series SAR images , 2012 .

[118]  Cheng Wang,et al.  Mapping mixed vegetation communities in salt marshes using airborne spectral data , 2007 .

[119]  J. A. Stallins,et al.  Engineer pioneer plants respond to and affect geomorphic constraints similarly along water-terrestrial interfaces world-wide , 2015 .