Nonautonomous "rogons" in the inhomogeneous nonlinear Schrödinger equation with variable coefficients

Abstract The analytical nonautonomous rogons are reported for the inhomogeneous nonlinear Schrodinger equation with variable coefficients in terms of rational-like functions by using the similarity transformation and direct ansatz. These obtained solutions can be used to describe the possible formation mechanisms for optical, oceanic, and matter rogue wave phenomenon in optical fibres, the deep ocean, and Bose–Einstein condensates, respectively. Moreover, the snake propagation traces and the fascinating interactions of two nonautonomous rogons are generated for the chosen different parameters. The obtained nonautonomous rogons may excite the possibility of relative experiments and potential applications for the rogue wave phenomenon in the field of nonlinear science.

[1]  Zhenya Yan Separation transformation and envelope solutions of the higher-dimensional complex nonlinear Klein?Gordon equation , 2007 .

[2]  N. Akhmediev,et al.  Waves that appear from nowhere and disappear without a trace , 2009 .

[3]  A. Osborne,et al.  Freak waves in random oceanic sea states. , 2001, Physical review letters.

[4]  V. Shrira,et al.  Can bottom friction suppress ‘freak wave’ formation? , 2008, Journal of Fluid Mechanics.

[5]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[6]  B. M. Fulk MATH , 1992 .

[7]  G. Agrawal,et al.  Do solitonlike self-similar waves exist in nonlinear optical media? , 2006, Physical review letters.

[8]  Karsten Trulsen,et al.  NOTE ON BREATHER TYPE SOLUTIONS OF THE NLS AS MODELS FOR FREAK-WAVES , 1999 .

[9]  Alan S. Osborne,et al.  THE FOURTEENTH 'AHA HULIKO' A HAWAIIAN WINTER WORKSHOP , 2005 .

[10]  Zhenya Yan Similarity transformations and exact solutions for a family of higher-dimensional generalized Boussinesq equations , 2007 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  J. Soto-Crespo,et al.  How to excite a rogue wave , 2009 .

[13]  Efim Pelinovsky,et al.  Physical Mechanisms of the Rogue Wave Phenomenon , 2003 .

[14]  Nonlinear stage of the Benjamin-Feir instability: three-dimensional coherent structures and rogue waves. , 2007, Physical review letters.

[15]  D. Psaltis,et al.  Nonlinearity management in optics: experiment, theory, and simulation. , 2006, Physical review letters.

[16]  J. Soto-Crespo,et al.  Rogue waves and rational solutions of the nonlinear Schrödinger equation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Yan‐Chow Ma,et al.  The Perturbed Plane‐Wave Solutions of the Cubic Schrödinger Equation , 1979 .

[18]  N. Akhmediev,et al.  Exact first-order solutions of the nonlinear Schrödinger equation , 1987 .

[19]  Akira Hasegawa,et al.  Nonautonomous solitons in external potentials. , 2007, Physical review letters.

[20]  G. Millot,et al.  Optical rogue-wave-like extreme value fluctuations in fiber Raman amplifiers. , 2008, Optics express.

[21]  Víctor M. Pérez-García,et al.  Similarity transformations for nonlinear Schrödinger equations with time-dependent coefficients , 2005, nlin/0512061.

[22]  W. Perrie,et al.  Nonlinear Ocean Waves , 1997 .

[23]  Kharif Christian,et al.  Rogue Waves in the Ocean , 2009 .

[24]  Benjamin J. Eggleton,et al.  Photonics: Rogue waves surface in light , 2007, Nature.

[25]  L Stenflo,et al.  Instability and evolution of nonlinearly interacting water waves. , 2006, Physical review letters.

[26]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[27]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Appendix. Fundamental constants and conversion factors , 2008 .

[28]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[29]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[30]  Juan Belmonte-Beitia,et al.  Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. , 2006, Physical review letters.

[31]  V. Konotop,et al.  Matter rogue waves , 2009 .

[32]  Zhenya Yan,et al.  Exact solutions to three-dimensional generalized nonlinear Schrödinger equations with varying potential and nonlinearities. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Akira Hasegawa,et al.  Optical solitons in fibers , 1993, International Commission for Optics.

[34]  J. Soto-Crespo,et al.  Extreme waves that appear from nowhere: On the nature of rogue waves , 2009 .

[35]  A. Osborne,et al.  Modulational instability in crossing sea states: a possible mechanism for the formation of freak waves. , 2006, Physical review letters.

[36]  B. Eliasson,et al.  Evolution of rogue waves in interacting wave systems , 2009, 0904.0522.

[37]  N. Akhmediev,et al.  Are rogue waves robust against perturbations , 2009 .

[38]  Yuri S. Kivshar,et al.  Optical Solitons: From Fibers to Photonic Crystals , 2003 .

[39]  B. Malomed,et al.  Spatiotemporal optical solitons , 2005 .

[40]  N. Akhmediev,et al.  Modulation instability and periodic solutions of the nonlinear Schrödinger equation , 1986 .

[41]  D. H. Peregrine,et al.  Water waves, nonlinear Schrödinger equations and their solutions , 1983, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[42]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[43]  J. Wolf,et al.  Optical rogue wave statistics in laser filamentation. , 2009, Optics express.

[44]  B. Jalali,et al.  Active control of rogue waves for stimulated supercontinuum generation. , 2008, Physical review letters.