Many Aspects of Magnetic Fields in Neutron Stars

In this work, we explore different aspects in which strong magnetic fields play a role in the composition, structure and evolution of neutron stars. More specifically, we discuss (i) how strong magnetic fields change the equation of state of dense matter, alter its composition, and create anisotropies, (ii) how they change the structure of neutron stars (such mass and radius) and the formalism necessary to calculate those changes, and (iii) how they can affect neutron stars’ evolution. In particular, we focus on how a time-dependent magnetic field modifies the cooling of a special group known as X-ray dim neutron stars.

[1]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[2]  R. Tolman Static Solutions of Einstein's Field Equations for Spheres of Fluid , 1939 .

[3]  H. Bondi The contraction of gravitating spheres , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  F. Weber,et al.  Thermal evolution of neutron stars in two dimensions , 2012, 1201.2381.

[5]  A self-consistent study of magnetic field effects on hybrid stars , 2015, 1508.04431.

[6]  H. Murakami,et al.  Possible evidence for free precession of a strongly magnetized neutron star in the magnetar 4U 0142+61. , 2014, Physical review letters.

[7]  R. Hollerbach,et al.  Magnetic field evolution in magnetar crusts through three-dimensional simulations , 2016, Proceedings of the National Academy of Sciences.

[8]  D. Kaplan,et al.  CONSTRAINING THE SPIN-DOWN OF THE NEARBY ISOLATED NEUTRON STAR RX J2143.0+0654 , 2009 .

[9]  U. Geppert,et al.  Magneto-thermal evolution of neutron stars , 2008, 0812.3018.

[10]  U. Geppert,et al.  Submergence and re-diffusion of the neutron star magnetic field after the supernova , 1999 .

[11]  R. Chevalier Neutron Star Accretion in a Supernova , 1989 .

[12]  S. Schramm,et al.  Hybrid stars in a strong magnetic field , 2011, 1108.4479.

[13]  D. Chatterjee,et al.  Consistent neutron star models with magnetic-field-dependent equations of state , 2014, 1410.6332.

[14]  D. Menezes,et al.  Maxwell equation violation by density dependent magnetic fields in neutron stars , 2016, 1607.07687.

[15]  D. Viganò,et al.  Central compact objects and the hidden magnetic field scenario , 2012 .

[16]  William H. Lee,et al.  HYPERCRITICAL ACCRETION ONTO A NEWBORN NEUTRON STAR AND MAGNETIC FIELD SUBMERGENCE , 2012, 1212.0464.

[17]  R. Perna,et al.  Unifying the observational diversity of isolated neutron stars via magneto-thermal evolution models. , 2013, 1306.2156.

[18]  Christopher Thompson,et al.  The Soft Gamma Repeaters as Very Strongly Magnetized Neutron Stars. II. Quiescent Neutrino, X-Ray, and Alfvén Wave Emission , 1996 .

[19]  Ye-Fei Yuan,et al.  The Effects of Interior Magnetic Fields on the Properties of Neutron Stars in the Relativistic Mean-Field Theory , 1999 .

[20]  C. Thompson,et al.  The soft gamma repeaters as very strongly magnetized neutron stars - I. Radiative mechanism for outbursts , 1995 .

[21]  S. Shapiro,et al.  Cold equation of state in a strong magnetic field - Effects of inverse beta-decay , 1991 .

[22]  Quark matter in a strong magnetic field. , 1996, Physical review. D, Particles and fields.

[23]  V. Kaspi Grand unification of neutron stars , 2010, Proceedings of the National Academy of Sciences.

[24]  V. Kaspi,et al.  Radio Pulsars: The Neutron Star Population Fundamental Physics , 2016, 1602.07738.

[25]  J. Anderson,et al.  The Parallax and Proper Motion of RX J1856.5–3754 Revisited , 2001, astro-ph/0111174.

[26]  D. Thompson,et al.  Detection of a γ-ray burst of very long duration and very high energy , 1994, Nature.

[27]  G. Bordbar,et al.  Magnetized hot neutron matter: Lowest order constrained variational calculations , 2012, 1212.0784.

[28]  D. Kaplan,et al.  CONSTRAINING THE SPIN-DOWN OF THE NEARBY ISOLATED NEUTRON STAR RX J0806.4−4123, AND IMPLICATIONS FOR THE POPULATION OF NEARBY NEUTRON STARS , 2009, 0909.5218.

[29]  W. Ho,et al.  Cooling rates of neutron stars and the young neutron star in the Cassiopeia A supernova remnant , 2010, 1010.1154.

[30]  Toronto,et al.  A Coherent Timing Solution for the Nearby Isolated Neutron Star RX J0720.4–3125 , 2005, astro-ph/0506419.

[31]  D. Kaplan,et al.  Timing the Nearby Isolated Neutron Star RX J1856.5–3754 , 2007, 0712.3212.

[32]  V. Kaspi,et al.  THE McGILL MAGNETAR CATALOG , 2013, 1309.4167.

[33]  ROTATING NEUTRON STAR MODELS WITH MAGNETIC FIELD , 1995, gr-qc/9503044.

[34]  L. Herrera,et al.  Dynamics of viscous dissipative gravitational collapse: A full causal approach , 2008, 0804.3584.

[35]  M. Strickland,et al.  The influence of strong magnetic fields on proto-quark stars , 2012, 1210.4526.

[36]  J. Lattimer,et al.  Rapid cooling of the neutron star in Cassiopeia A triggered by neutron superfluidity in dense matter. , 2010, Physical review letters.

[37]  S. Popov,et al.  Progenitors with enhanced rotation and the origin of magnetars , 2006 .

[38]  L. Herrera,et al.  Axially symmetric static sources: A general framework and some analytical solutions , 2013, 1301.2424.

[39]  F. Weber,et al.  Impact of rotation-driven particle repopulation on the thermal evolution of pulsars , 2011, 1103.3870.

[40]  Richard C. Tolman Effect of Inhomogeneity on Cosmological Models , 1997 .

[41]  M. C. Begam,et al.  An unusual supernova in the error box of the γ-ray burst of 25 April 1998 , 1998, Nature.

[42]  R. Farias,et al.  What is the magnetic field distribution for the equation of state of magnetized neutron stars , 2016, 1612.05795.

[43]  N. Bucciantini,et al.  Axisymmetric equilibrium models for magnetized neutron stars in General Relativity under the Conformally Flat Condition , 2014, 1401.4308.

[44]  Caltech,et al.  A Strong, Broad Absorption Feature in the X-Ray Spectrum of the Nearby Neutron Star RX J1605.3+3249 , 2004, astro-ph/0402418.

[45]  Eric Gourgoulhon,et al.  Axisymmetric rotating relativistic bodies: a new numerical approach for exact' solutions , 1993 .

[46]  William H. Lee,et al.  Hypercritical accretion onto a magnetized neutron star surface: a numerical approach , 2010, 1006.3003.

[47]  F. Walter,et al.  Discovery of a nearby isolated neutron star , 1996, Nature.

[48]  Effects of Strong Magnetic Fields on the Neutron Star Structure , 2001 .

[49]  Cambridge,et al.  XMM-Newton Detection of Pulsations and a Spectral Feature in the X-Ray Emission of the Isolated Neutron Star 1RXS J214303.7+065419/RBS 1774 , 2005, astro-ph/0503239.

[50]  J. Weingartner,et al.  Accretion onto and Radiation from the Compact Object Formed in SN 1987A , 1994 .

[51]  Christopher Thompson,et al.  Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts , 1992 .

[52]  Insignificance of the anomalous magnetic moment of charged fermions for the equation of state of a magnetized and dense medium , 2015, 1501.06616.

[53]  D. Kaplan Nearby, Thermally Emitting Neutron Stars , 2008, 0801.1143.

[54]  Weinberg Why do quarks behave like bare Dirac particles? , 1990, Physical review letters.

[55]  L. Rezzolla,et al.  Equilibrium models of relativistic stars with a toroidal magnetic field , 2012, 1207.4035.

[56]  D. Kaplan,et al.  ApJ Letters in Press Preprint typeset using L ATEX style emulateapj v. 11/26/04 A COHERENT TIMING SOLUTION FOR THE NEARBY ISOLATED NEUTRON STAR RX J1308.6+2127/RBS 1223 , 2005 .

[57]  Spherically symmetric dissipative anisotropic fluids: A General study , 2004, gr-qc/0403006.

[58]  Craig O. Heinke,et al.  Cooling neutron star in the Cassiopeia A supernova remnant: evidence for superfluidity in the core , 2010, 1012.0045.

[59]  S. Schramm,et al.  Many-body Forces in Magnetic Neutron Stars , 2017, 1709.01017.

[60]  F. Haberl AXPs and X-ray dim neutron stars: Recent XMM-Newton and Chandra results , 2002 .

[61]  J. Heyl,et al.  Statistical ages and the cooling rate of X-ray dim isolated neutron stars , 2013, 1305.0930.

[62]  A. Tranberg,et al.  Phase diagram of QCD in a magnetic field , 2014, 1411.7176.

[63]  C. Thompson,et al.  Neutron star dynamos and the origins of pulsar magnetism , 1993 .

[64]  D. Page,et al.  Delayed switch-on of pulsars , 1995 .

[65]  The Equation of State of Neutron Star Matter in Strong Magnetic Fields , 2000, astro-ph/0001537.

[66]  Masahide Yamaguchi,et al.  Supersymmetric DBI inflation , 2012, 1205.1353.

[67]  M. Strickland,et al.  Bulk Properties of a Fermi Gas in a Magnetic Field , 2012, 1209.3276.

[68]  S. M. D. Carvalho,et al.  Thermal evolution of hybrid stars within the framework of a nonlocal Nambu–Jona-Lasinio model , 2015, 1601.02938.

[69]  J. Lattimer,et al.  Minimal Cooling of Neutron Stars: A New Paradigm , 2004, astro-ph/0403657.

[70]  J. Oppenheimer,et al.  On Massive neutron cores , 1939 .

[71]  J. Oppenheimer,et al.  On Continued Gravitational Contraction , 1939 .

[72]  N. Bucciantini,et al.  General relativistic models for rotating magnetized neutron stars in conformally flat space–time , 2017, 1705.03795.

[73]  V. Canuto,et al.  Thermodynamic properties of a magnetized Fermi gas. , 1968 .

[74]  A. Harding The neutron star zoo , 2013, Frontiers of Physics.

[75]  Mullard Space Science Laboratory,et al.  XMM-Newton reveals a candidate period for the spin of the “Magnificent Seven” neutron star RX J1605.3+3249 , 2014, 1401.7147.

[76]  V. Canuto,et al.  Quantum Theory of an Electron Gas in Intense Magnetic Fields , 1968 .