Initiation of Protein Synthesis in Bacteria

SUMMARY Valuable information on translation initiation is available from biochemical data and recently solved structures. We present a detailed description of current knowledge about the structure, function, and interactions of the individual components involved in bacterial translation initiation. The first section describes the ribosomal features relevant to the initiation process. Subsequent sections describe the structure, function, and interactions of the mRNA, the initiator tRNA, and the initiation factors IF1, IF2, and IF3. Finally, we provide an overview of mechanisms of regulation of the translation initiation event. Translation occurs on ribonucleoprotein complexes called ribosomes. The ribosome is composed of a large subunit and a small subunit that hold the activities of peptidyltransfer and decode the triplet code of the mRNA, respectively. Translation initiation is promoted by IF1, IF2, and IF3, which mediate base pairing of the initiator tRNA anticodon to the mRNA initiation codon located in the ribosomal P-site. The mechanism of translation initiation differs for canonical and leaderless mRNAs, since the latter is dependent on the relative level of the initiation factors. Regulation of translation occurs primarily in the initiation phase. Secondary structures at the mRNA ribosomal binding site (RBS) inhibit translation initiation. The accessibility of the RBS is regulated by temperature and binding of small metabolites, proteins, or antisense RNAs. The future challenge is to obtain atomic-resolution structures of complete initiation complexes in order to understand the mechanism of translation initiation in molecular detail.

[1]  H. Huxley,et al.  Electron microscope observations on the structure of microsomal particles from Escherichia coli , 1960 .

[2]  J. Steitz Polypeptide Chain Initiation: Nucleotide Sequences of the Three Ribosomal Binding Sites in Bacteriophage R17 RNA , 1969, Nature.

[3]  M. Grunberg‐Manago,et al.  Interaction between Guanosine Derivatives and Factors involved in the Initiation of Protein Synthesis , 1970, Nature.

[4]  U. Maitra,et al.  A complex between initiation factor IF2, guanosine triphosphate, and fMet-tRNA: an intermediate in initiation complex formation. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[5]  U. Maitra,et al.  Release of polypeptide chain initiation factor IF-2 during initiation complex formation. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[6]  W. Ewing,et al.  Identification of Enterobacteriaceae. , 1972 .

[7]  J. Bodley,et al.  Ribosomes cannot interact simultaneously with elongation factors EF Tu and EF G. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Shine,et al.  The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M Grunberg-Manago,et al.  Light-scattering studies showing the effect of initiation factors on the reversible dissociation of Escherichia coli ribosomes. , 1975, Journal of molecular biology.

[10]  R. Traut,et al.  Cross-linking of initiation factor IF-2 to Escherichia coli 30 S ribosomal proteins with dimethylsuberimidate. , 1975, The Journal of biological chemistry.

[11]  R. Baan,et al.  Specific in situ cleavage of 16S ribosomal RNA of Escherichia coli interferes with the function of initiation factor IF-1. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J A Lake,et al.  Ribosome structure determined by electron microscopy of Escherichia coli small subunits, large subunits and monomeric ribosomes. , 1976, Journal of molecular biology.

[13]  U. Maitra,et al.  Interaction of bacterial initiation factor 2 with initiator tRNA. , 1976, The Journal of biological chemistry.

[14]  N. Gupta,et al.  Specific binding of Excherichia coli chain Initiation factor 2 to fMet-tRnafMet. , 1976, The Journal of biological chemistry.

[15]  M. Grunberg‐Manago,et al.  Photosensitized cross‐linking of IF‐3 to Escherichia coli 30 S subunits , 1977, FEBS letters.

[16]  H. Ozeki,et al.  Gross map location of Escherichia coli transfer RNA genes. , 1977, Journal of molecular biology.

[17]  C. Gualerzi,et al.  Initial rate kinetic analysis of the mechanism of initiation complex formation and the role of initiation factor IF-3. , 1977, Biochemistry.

[18]  H. Riezman,et al.  Transcription and translation initiation frequencies of the Escherichia coli lac operon. , 1977, Journal of molecular biology.

[19]  Function of initiation factor 1 in the binding and release of initiation factor 2 from ribosomal initiation complexes in Escherichia coli. , 1977, The Journal of biological chemistry.

[20]  J. Ravel,et al.  The effects of initiation factors IF‐1 and IF‐3 on the dissociation of escherichia coli 70 S ribosomes , 1979, FEBS letters.

[21]  M. Grunberg‐Manago,et al.  Specific interaction of initiation factor IF2 of E. coli with formylmethionyl-tRNA f Met. , 1979, Biochemical and biophysical research communications.

[22]  A. Wahba,et al.  Photochemical cross-linking of initiation factor-3 to Escherichia coli 30 S ribosomal subunits. , 1980, The Journal of biological chemistry.

[23]  M. Grunberg‐Manago,et al.  IF-3 crosslinking to Escherichia coli ribosomal 30 S subunits by three different light-dependent procedures: identification of 30 S proteins crosslinked to IF-3--utilization of a new two-stage crosslinking reagent, p-nitrobenzylmaleimide. , 1981, Archives of biochemistry and biophysics.

[24]  R. Gutell,et al.  Secondary structure model for 23S ribosomal RNA. , 1981, Nucleic acids research.

[25]  M. Grunberg‐Manago,et al.  A study of the interaction of Escherichia coli initiation factor IF2 with formylmethionyl‐tRNAMet f by partial digestion with cobra venom ribonuclease , 1981, FEBS letters.

[26]  C. Pon,et al.  Structure-function relationship in Escherichia coli initiation factors. Environment of the Cys residue and evidence for a hydrophobic region in initiation factor IF3 by fluorescence and ESR spectroscopy. , 1982, Archives of biochemistry and biophysics.

[27]  M Grunberg-Manago,et al.  Sequence of a 1.26‐kb DNA fragment containing the structural gene for E.coli initiation factor IF3: presence of an AUU initiator codon. , 1982, The EMBO journal.

[28]  M. Grunberg‐Manago,et al.  Cloning and mapping of a gene for translational initiation factor IF2 in Escherichia coli. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Kozak Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. , 1983, Microbiological reviews.

[30]  M. Springer,et al.  Organization of the Escherichia coli chromosome around the genes for translation initiation factor IF2 (infB) and a transcription termination factor (nusA). , 1983, Journal of molecular biology.

[31]  R. Traut,et al.  Direct cross-links between initiation factors 1, 2, and 3 and ribosomal proteins promoted by 2-iminothiolane. , 1983, Biochemistry.

[32]  J. Hershey,et al.  Initiation factor and ribosome levels are coordinately controlled in Escherichia coli growing at different rates. , 1983, The Journal of biological chemistry.

[33]  W. Wintermeyer,et al.  Effect of Escherichia coli initiation factors on the kinetics of N-Acphe-tRNAPhe binding to 30S ribosomal subunits. A fluorescence stopped-flow study. , 1983, Biochemistry.

[34]  G. Stöffler,et al.  Immunoelectron microscopy of ribosomes. , 1984, Annual review of biophysics and bioengineering.

[35]  Research lettersMechanism of protein biosynthesis in prokaryotic cells: Effect of initiation factor IF1 on the initial rate of 30 S initiation complex formation , 1984 .

[36]  S. Ishii,et al.  tRNAMetf2 gene in the leader region of the nusA operon in Escherichia coli. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. Grunberg‐Manago,et al.  Sequence of the initiation factor IF2 gene: unusual protein features and homologies with elongation factors. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Nakamura Yoshikazu,et al.  Evidence for autoregulation of the nusA-infB operon of Escherichia coli. , 1985 .

[39]  Y. Nakamura,et al.  Evidence for autoregulation of the nusA-infB operon of Escherichia coli. , 1985, Gene.

[40]  Y. Nakamura,et al.  Effect of NusA protein on expression of the nusA,infB operon in E. coli. , 1985, Nucleic acids research.

[41]  C. Gualerzi,et al.  Structure-function relationship in Escherichia coli initiation factors. Biochemical and biophysical characterization of the interaction between IF-2 and guanosine nucleotides. , 1985, The Journal of biological chemistry.

[42]  T. D. Schneider,et al.  Information content of binding sites on nucleotide sequences. , 1986, Journal of molecular biology.

[43]  M. Grunberg‐Manago,et al.  Escherichia coli protein synthesis initiation factor IF3 controls its own gene expression at the translational level in vivo. , 1986, Journal of molecular biology.

[44]  C. Gualerzi,et al.  Mechanism of translational initiation in prokaryotes , 1986, FEBS letters.

[45]  B. Clark,et al.  Interaction between initiator Met-tRNAfMet and elongation factor EF-Tu from E. coli. , 1986, Biochimie.

[46]  H. Heus,et al.  Circular dichroism and 500-MHz proton magnetic resonance studies of the interaction of Escherichia coli translational initiation factor 3 protein with the 16S ribosomal RNA 3' cloacin fragment. , 1986, Biochemistry.

[47]  B. Seong,et al.  Mutants of Escherichia coli formylmethionine tRNA: a single base change enables initiator tRNA to act as an elongator in vitro. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[48]  B. Seong,et al.  Escherichia coli formylmethionine tRNA: mutations in GGGCCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[49]  B. Clark,et al.  Properties of a genetically engineered G domain of elongation factor Tu. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Ebel,et al.  Probing the structure of RNAs in solution. , 1987, Nucleic acids research.

[51]  C. Gualerzi,et al.  Interaction of Escherichia coli translation-initiation factor IF-1 with ribosomes. , 1988, European journal of biochemistry.

[52]  H. Noller,et al.  Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA , 1988, Nature.

[53]  I. Schwartz,et al.  Transcriptional patterns for the thrS-infC-rplT operon of Escherichia coli. , 1988, Gene.

[54]  John F. Sands,et al.  The existence of two genes between infB and rpsO in the Escherichia coli genome: DNA sequencing and S1 nuclease mapping. , 1988, Nucleic acids research.

[55]  L. Gold,et al.  Selection of the initiator tRNA by Escherichia coli initiation factors. , 1989, Genes & development.

[56]  E. Wickstrom,et al.  Escherichia coli initiation factor 3 protein binding to 30S ribosomal subunits alters the accessibility of nucleotides within the conserved central region of 16S rRNA. , 1989, Biochemistry.

[57]  C. Gualerzi,et al.  Site-directed mutagenesis of Escherichia coli translation initiation factor IF1. Identification of the amino acid involved in its ribosomal binding and recycling. , 1989, Protein engineering.

[58]  The solution structure of the Escherichia coli initiator tRNA and its interactions with initiation factor 2 and the ribosomal 30 S subunit. , 1989, The Journal of biological chemistry.

[59]  C. Gualerzi,et al.  Initiation of mRNA translation in prokaryotes. , 1990, Biochemistry.

[60]  M. Springer,et al.  Translated translational operator in Escherichia coli. Auto-regulation in the infC-rpmI-rplT operon. , 1990, Journal of molecular biology.

[61]  M. L. Sprengart,et al.  The initiation of translation in E. coli: apparent base pairing between the 16srRNA and downstream sequences of the mRNA. , 1990, Nucleic acids research.

[62]  L. Gold,et al.  Domains of initiator tRNA and initiation codon crucial for initiator tRNA selection by Escherichia coli IF3. , 1990, Genes & development.

[63]  J. van Duin,et al.  Control of prokaryotic translational initiation by mRNA secondary structure. , 1990, Progress in nucleic acid research and molecular biology.

[64]  C. Gualerzi,et al.  Proteolysis of Bacillus stearothermophilus IF2 and specific protection by GTP , 1990, FEBS letters.

[65]  J. van Duin,et al.  Scanning model for translational reinitiation in eubacteria. , 1990, Journal of molecular biology.

[66]  C. Gualerzi,et al.  Molecular dissection of translation initiation factor IF2. Evidence for two structural and functional domains. , 1991, The Journal of biological chemistry.

[67]  I. V. Boni,et al.  Ribosome-messenger recognition: mRNA target sites for ribosomal protein S1 , 1991, Nucleic Acids Res..

[68]  D. Moras,et al.  Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp) , 1991, Science.

[69]  M. Grunberg‐Manago,et al.  Topography of the Escherichia coli ribosomal 30S subunit-initiation factor 2 complex. , 1991, Biochimie.

[70]  K. Mortensen,et al.  Tandem translation of E. coli initiation factor IF2 beta: purification and characterization in vitro of two active forms. , 1991, Biochemical and biophysical research communications.

[71]  A. Bogdanov,et al.  How does the mRNA pass through the ribosome? , 1991, Biochimie.

[72]  Structure and expression of the infA operon encoding translational initiation factor IF1. Transcriptional control by growth rate. , 1991, The Journal of biological chemistry.

[73]  C. Gualerzi,et al.  Site-directed mutagenesis and NMR spectroscopic approaches to the elucidation of the structure-function relationships in translation initiation factors IF1 and IF3. , 1991, Biochimie.

[74]  M. Springer,et al.  Messenger RNA secondary structure and translational coupling in the Escherichia coli operon encoding translation initiation factor IF3 and the ribosomal proteins, L35 and L20. , 1992, Journal of molecular biology.

[75]  Tandem translation of Bacillus subtilis initiation factor IF2 in E. coli. Over-expression of infBB.su in E. coli and purification of alpha- and beta-forms of IF2B.su. , 1992, FEBS letters.

[76]  M P Deutscher,et al.  A uridine-rich sequence required for translation of prokaryotic mRNA. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[77]  G. Stormo,et al.  Translation initiation in Escherichia coli: sequences within the ribosome‐binding site , 1992, Molecular microbiology.

[78]  C. Gualerzi,et al.  Proteolysis of Bacillus stearothermophilus IF2 and specific protection by fMet‐tRNA , 1992, FEBS letters.

[79]  Y. Mechulam,et al.  Disruption of the gene for Met-tRNA(fMet) formyltransferase severely impairs growth of Escherichia coli , 1992, Journal of bacteriology.

[80]  J C Rabinowitz,et al.  The influence of ribosome‐binding‐site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo , 1992, Molecular microbiology.

[81]  M. Grunberg‐Manago,et al.  Both forms of translational initiation factor IF2 (alpha and beta) are required for maximal growth of Escherichia coli. Evidence for two translational initiation codons for IF2 beta. , 1992, Journal of molecular biology.

[82]  M. Grunberg‐Manago,et al.  Tandem translation of Bacillus subtilis initiation factor IF2 in E. coli Over‐expression of infB B.su in E. coli and purification of α‐ and β‐forms of IF2B.su , 1992 .

[83]  U. RajBhandary,et al.  Role of methionine and formylation of initiator tRNA in initiation of protein synthesis in Escherichia coli , 1992, Journal of bacteriology.

[84]  M. Grunberg‐Manago,et al.  Both forms of translational initiation factor IF2 (α and β) are required for maximal growth of Escherichia coli: Evidence for two translational initiation codons for IF2β , 1992 .

[85]  Y. Mechulam,et al.  The Escherichia coli fmt gene, encoding methionyl-tRNA(fMet) formyltransferase, escapes metabolic control , 1993, Journal of bacteriology.

[86]  U. RajBhandary,et al.  From elongator tRNA to initiator tRNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[87]  N. V. Tzareva,et al.  Ribosome‐messenger recognition in the absence of the Shine‐Dalgarno interactions , 1994, FEBS letters.

[88]  M. Grunberg‐Manago,et al.  In vivo study of engineered G‐domain mutants of Escherichia coli translation initiation factor IF2 , 1994, Molecular microbiology.

[89]  The N-terminal half of initiation factor IF3 is folded as a stable independent domain. , 1994, Biochimie.

[90]  R. Brimacombe,et al.  Prokaryotic translation: the interactive pathway leading to initiation. , 1994, Trends in genetics : TIG.

[91]  J W Hershey,et al.  Translation initiation factor IF1 is essential for cell viability in Escherichia coli , 1994, Journal of bacteriology.

[92]  M. Nomura,et al.  Post-transcriptional regulation of the str operon in Escherichia coli. Ribosomal protein S7 inhibits coupled translation of S7 but not its independent translation. , 1994, Journal of molecular biology.

[93]  Y. Kano,et al.  Three tandemly repeated structural genes encoding tRNA(f1Met) in the metZ operon of Escherichia coli K-12. , 1994, Gene.

[94]  U. RajBhandary,et al.  Initiator transfer RNAs , 1994, Journal of bacteriology.

[95]  V. Ramakrishnan,et al.  X‐ray crystallography shows that translational initiation factor IF3 consists of two compact alpha/beta domains linked by an alpha‐helix. , 1995, The EMBO journal.

[96]  J. Frank,et al.  A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome , 1995, Nature.

[97]  Coevolution of RNA helix stability and Shine‐Dalgarno complementarity in a translational start region , 1995, Molecular microbiology.

[98]  R. Brimacombe,et al.  From stand-by to decoding site. Adjustment of the mRNA on the 30S ribosomal subunit under the influence of the initiation factors. , 1995, RNA.

[99]  S. Blanquet,et al.  Solution structure of the ribosome-binding domain of E. coli translation initiation factor IF3. Homology with the U1A protein of the eukaryotic spliceosome. , 1995, Journal of molecular biology.

[100]  U. RajBhandary,et al.  Initiator tRNAs and Initiation of Protein Synthesis , 1995 .

[101]  V. Ramakrishnan,et al.  Prokaryotic translation initiation factor IF3 is an elongated protein consisting of two crystallizable domains. , 1995, Biochemistry.

[102]  N. Sonenberg,et al.  Translational control of gene expression , 2000 .

[103]  Dieter Söll,et al.  Trna: Structure, Biosynthesis, and Function , 1995 .

[104]  U. RajBhandary,et al.  Escherichia coli initiator tRNA: structure-function relationships and interactions with the translational machinery. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[105]  H. Noller,et al.  Specific protection of 16 S rRNA by translational initiation factors. , 1995, Journal of molecular biology.

[106]  Improved recombinant tandem expression of translation initiation factor IF2 in RNASE E deficient E. coli cells. , 1995, Biochemical and biophysical research communications.

[107]  S Thirup,et al.  Crystal Structure of the Ternary Complex of Phe-tRNAPhe, EF-Tu, and a GTP Analog , 1995, Science.

[108]  M. Springer,et al.  A long‐range RNA‐RNA interaction forms a pseudoknot required for translational control of the IF3‐L35‐L20 ribosomal protein operon in Escherichia coli. , 1996, The EMBO journal.

[109]  M. Springer,et al.  The role of the AUU initiation codon in the negative feedback regulation of the gene for translation initiation factor IF3 in Escherichia coli , 1996, Molecular microbiology.

[110]  R. Simons,et al.  Escherichia coli translation initiation factor 3 discriminates the initiation codon in vivo , 1996, Molecular microbiology.

[111]  M. Grunberg‐Manago,et al.  Interplay of Methionine tRNAs with Translation Elongation Factor Tu and Translation Initiation Factor 2 in Escherichia coli* , 1996, The Journal of Biological Chemistry.

[112]  M. Grunberg‐Manago,et al.  Topography of the Escherichia coli initiation factor 2/fMet-tRNA(f)(Met) complex as studied by cross-linking. , 1996, Biochemistry.

[113]  C. Ehresmann,et al.  Pseudoknot and translational control in the expression of the S15 ribosomal protein , 1996, Biochimie.

[114]  C. Gualerzi,et al.  Late events in translation initiation. Adjustment of fMet-tRNA in the ribosomal P-site. , 1996, Journal of molecular biology.

[115]  M. L. Sprengart,et al.  The downstream box: an efficient and independent translation initiation signal in Escherichia coli. , 1996, The EMBO journal.

[116]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[117]  P. Moore,et al.  On the conformation of the anticodon loops of initiator and elongator methionine tRNAs. , 1997, Journal of molecular biology.

[118]  S. Blanquet,et al.  Heteronuclear NMR studies of E. coli translation initiation factor IF3. Evidence that the inter-domain region is disordered in solution. , 1997, Journal of molecular biology.

[119]  R. Poot,et al.  RNA folding kinetics regulates translation of phage MS2 maturation gene. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[120]  H. Noller,et al.  Ribosomes and translation. , 1997, Annual review of biochemistry.

[121]  B. Dérijard,et al.  Translation initiation factor IF2 of the myxobacterium Stigmatella aurantiaca: presence of a single species with an unusual N-terminal sequence , 1997, Journal of bacteriology.

[122]  H. Vornlocher,et al.  Organization of the Thermus thermophilus nusA/infB operon and overexpression of the infB gene in Escherichia coli. , 1997, Biochimie.

[123]  U. RajBhandary,et al.  Effect of the Amino Acid Attached to Escherichia coli Initiator tRNA on Its Affinity for the Initiation Factor IF2 and on the IF2 Dependence of Its Binding to the Ribosome* , 1997, The Journal of Biological Chemistry.

[124]  P. Dennis Ancient Ciphers: Translation in Archaea , 1997, Cell.

[125]  M. Springer,et al.  Translational coupling by modulation of feedback repression in the IF3 operon of Escherichia coli. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[126]  C. Gualerzi,et al.  The structure of the translational initiation factor IF1 from E.coli contains an oligomer‐binding motif , 1997, The EMBO journal.

[127]  R. Cedergren,et al.  On the Origin of Protein Synthesis Factors: A Gene Duplication/Fusion Model , 1997, Journal of Molecular Evolution.

[128]  L. Spremulli,et al.  Structural and mechanistic studies on chloroplast translational initiation factor 3 from Euglena gracilis. , 1997, Biochemistry.

[129]  S. Lovett,et al.  IF3-mediated suppression of a GUA initiation codon mutation in the recJ gene of Escherichia coli , 1997, Journal of bacteriology.

[130]  K. Mortensen,et al.  E. coli translation initiation factor IF2 – an extremely conserved protein. Comparative sequence analysis of the infB gene in clinical isolates of E. coli , 1997, FEBS letters.

[131]  Mark Proctor,et al.  The Solution Structure of the S1 RNA Binding Domain: A Member of an Ancient Nucleic Acid–Binding Fold , 1997, Cell.

[132]  M. Sprinzl,et al.  Initiation factors of protein biosynthesis in bacteria and their structural relationship to elongation and termination factors , 1998, Molecular microbiology.

[133]  S H Kim,et al.  Crystal structures of eukaryotic translation initiation factor 5A from Methanococcus jannaschii at 1.8 A resolution. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[134]  G. Janssen,et al.  An AUG initiation codon, not codon–anticodon complementarity, is required for the translation of unleadered mRNA in Escherichia coli , 1998, Molecular microbiology.

[135]  Y. Mechulam,et al.  Crystal structure of methionyl‐tRNAfMet transformylase complexed with the initiator formyl‐methionyl‐tRNAfMet , 1998, The EMBO journal.

[136]  D. Raleigh,et al.  On the global architecture of initiation factor IF3: a comparative study of the linker regions from the Escherichia coli protein and the Bacillus stearothermophilus protein. , 1998, Journal of molecular biology.

[137]  L. Spremulli,et al.  Regulation of the Activity of Chloroplast Translational Initiation Factor 3 by NH2- and COOH-Terminal Extensions* , 1998, The Journal of Biological Chemistry.

[138]  S. Mottagui-Tabar,et al.  Evidence for in vivo ribosome recycling, the fourth step in protein biosynthesis , 1998, The EMBO journal.

[139]  N. Kyrpides,et al.  Universally conserved translation initiation factors. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[140]  S. Bell,et al.  Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features. , 1998, Trends in microbiology.

[141]  F. Govantes,et al.  Mechanism of translational coupling in the nifLA operon of Klebsiella pneumoniae , 1998, The EMBO journal.

[142]  RNA Mimicry in the Translational Apparatus , 1998 .

[143]  W. Merrick,et al.  Promotion of met-tRNAiMet binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast. , 1998, Science.

[144]  I. Siwanowicz,et al.  Binding of Escherichia coli initiation factor IF2 to 30S ribosomal subunits: a functional role for the N-terminus of the factor. , 1998, Biochemical and biophysical research communications.

[145]  K. Mortensen,et al.  A six‐domain structural model for Escherichia coli translation initiation factor IF2. Characterisation of twelve surface epitopes , 1998, Biochemistry and molecular biology international.

[146]  R. Simons,et al.  RNA structure and function , 1998 .

[147]  M. Inouye,et al.  Cold shock and adaptation , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[148]  W P Tate,et al.  Indirect regulation of translational termination efficiency at highly expressed genes and recoding sites by the factor recycling function of Escherichia coli release factor RF3 , 1999, The EMBO journal.

[149]  K. Mortensen,et al.  Characterization of the domains of E. coli initiation factor IF2 responsible for recognition of the ribosome , 1999, FEBS letters.

[150]  C. Gualerzi,et al.  The fMet‐tRNA binding domain of translational initiation factor IF2: role and environment of its two Cys residues , 1999, FEBS letters.

[151]  C. Gualerzi,et al.  Translation initiation factor 3 antagonizes authentic start codon selection on leaderless mRNAs , 1999, Molecular microbiology.

[152]  D. Trevor Newton,et al.  Formylation Is Not Essential for Initiation of Protein Synthesis in All Eubacteria* , 1999, The Journal of Biological Chemistry.

[153]  M. Springer,et al.  The interdomain linker of Escherichia coli initiation factor IF3: a possible trigger of translation initiation specificity , 1999, Molecular microbiology.

[154]  M. Ehrenberg,et al.  Novel roles for classical factors at the interface between translation termination and initiation. , 1999, Molecular cell.

[155]  C. Gualerzi,et al.  Identification of the ribosome binding sites of translation initiation factor IF3 by multidimensional heteronuclear NMR spectroscopy. , 1999, RNA.

[156]  U. RajBhandary,et al.  Induced fit of a peptide loop of methionyl-tRNA formyltransferase triggered by the initiator tRNA substrate. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[157]  M. Springer,et al.  Discrimination by Escherichia coli initiation factor IF3 against initiation on non-canonical codons relies on complementarity rules. , 1999, Journal of molecular biology.

[158]  J Frank,et al.  Location of translational initiation factor IF3 on the small ribosomal subunit. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[159]  M Grunberg-Manago,et al.  In Vitro Study of Two Dominant Inhibitory GTPase Mutants of Escherichia coli Translation Initiation Factor IF2 , 1999, The Journal of Biological Chemistry.

[160]  C. Squires,et al.  Enhancement of translation by the downstream box does not involve base pairing of mRNA with the penultimate stem sequence of 16S rRNA. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[161]  M. Kozak Initiation of translation in prokaryotes and eukaryotes. , 1999, Gene.

[162]  O. Nureki,et al.  Crystal structure of Escherichia coli methionyl-tRNA synthetase highlights species-specific features. , 1999, Journal of molecular biology.

[163]  T. Pape,et al.  Induced fit in initial selection and proofreading of aminoacyl‐tRNA on the ribosome , 1999, The EMBO journal.

[164]  J. Hedegaard,et al.  Identification of Enterobacteriaceae by partial sequencing of the gene encoding translation initiation factor 2. , 1999, International journal of systematic bacteriology.

[165]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit , 2000 .

[166]  Roberto Spurio,et al.  Structure of the fMet‐tRNAfMet‐binding domain of B.stearothermophilus initiation factor IF2 , 2000, The EMBO journal.

[167]  C. Gualerzi,et al.  Translation Initiation in Bacteria , 2000 .

[168]  M. Inouye,et al.  Escherichia coli CspA-family RNA chaperones are transcription antiterminators. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[169]  J. Hedegaard,et al.  Investigation of the translation-initiation factor IF2 gene, infB, as a tool to study the population structure of Streptococcus agalactiae. , 2000, Microbiology.

[170]  M. Rodnina,et al.  Late events of translation initiation in bacteria: a kinetic analysis , 2000, The EMBO journal.

[171]  J. Puglisi,et al.  Interaction of translation initiation factor IF1 with the E. coli ribosomal A site. , 2000, Journal of molecular biology.

[172]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[173]  H Shindo,et al.  High precision NMR structure of YhhP, a novel Escherichia coli protein implicated in cell division. , 2000, Journal of molecular biology.

[174]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution , 2000, Cell.

[175]  K. Mortensen,et al.  Macromolecular Mimicry in Translation Initiation: A Model for the Initiation Factor IF2 on the Ribosome , 2000, IUBMB life.

[176]  Stephen K. Burley,et al.  X-Ray Structures of the Universal Translation Initiation Factor IF2/eIF5B Conformational Changes on GDP and GTP Binding , 2000, Cell.

[177]  S. Limmer,et al.  Interaction of fMet-tRNAfMet and fMet-AMP with the C-terminal domain of Thermus thermophilus translation initiation factor 2. , 2000, European journal of biochemistry.

[178]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[179]  H. Stark,et al.  GTPase Mechanisms and Functions of Translation Factors on the Ribosome , 2000, Biological chemistry.

[180]  Roger A. Garrett,et al.  The Ribosome, Structure, Function, Antibiotics, and Cellular Interactions , 2000 .

[181]  C. Hellen,et al.  The structure and function of initiation factors in eukaryotic protein synthesis , 2000, Cellular and Molecular Life Sciences CMLS.

[182]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[183]  A Yonath,et al.  Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. , 2000, Cell.

[184]  G. Wagner,et al.  The eIF1A solution structure reveals a large RNA-binding surface important for scanning function. , 2000, Molecular cell.

[185]  U. Varshney,et al.  The Fate of the Initiator tRNAs Is Sensitive to the Critical Balance between Interacting Proteins* , 2000, The Journal of Biological Chemistry.

[186]  M. Grunberg‐Manago,et al.  Mutation of Thr445 and Ile500 of initiation factor 2 G-domain affects Escherichia coli growth rate at low temperature. , 2000, Biochimie.

[187]  C. Gualerzi,et al.  Selective stimulation of translation of leaderless mRNA by initiation factor 2: evolutionary implications for translation , 2000, The EMBO journal.

[188]  C. Gualerzi,et al.  The C-terminal Subdomain (IF2 C-2) Contains the Entire fMet-tRNA Binding Site of Initiation Factor IF2* , 2000, The Journal of Biological Chemistry.

[189]  C. Gualerzi,et al.  Interaction of fMet‐tRNAfMet with the C‐terminal domain of translational initiation factor IF2 from Bacillus stearothermophilus , 2000, FEBS letters.

[190]  C. Hellen,et al.  The joining of ribosomal subunits in eukaryotes requires eIF5B , 2000, Nature.

[191]  T. Caldas,et al.  Chaperone Properties of Bacterial Elongation Factor EF-G and Initiation Factor IF2* , 2000, The Journal of Biological Chemistry.

[192]  A. Hinnebusch,et al.  Physical and Functional Interaction between the Eukaryotic Orthologs of Prokaryotic Translation Initiation Factors IF1 and IF2 , 2000, Molecular and Cellular Biology.

[193]  C. Gualerzi,et al.  Mapping the fMet‐tRNAfMet binding site of initiation factor IF2 , 2000, The EMBO journal.

[194]  M. Springer,et al.  Post-transcriptional control by global regulators of gene expression in bacteria. , 2000, Current opinion in microbiology.

[195]  A Yonath,et al.  Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3 , 2001, The EMBO journal.

[196]  C. Gualerzi,et al.  Modulation of ribosomal recruitment to 5′‐terminal start codons by translation initiation factors IF2 and IF3 , 2001, FEBS letters.

[197]  V. Ramakrishnan,et al.  Recognition of Cognate Transfer RNA by the 30S Ribosomal Subunit , 2001, Science.

[198]  J. Miranda-Ríos,et al.  A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[199]  J. Hedegaard,et al.  Remarkable Conservation of Translation Initiation Factors: IF1/eIF1A and IF2/eIF5B are Universally Distributed Phylogenetic Markers , 2001, IUBMB life.

[200]  J. Frank,et al.  Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[201]  H. Noller,et al.  Interaction of translation initiation factor 3 with the 30S ribosomal subunit. , 2001, Molecular cell.

[202]  C. Gualerzi,et al.  Translation initiation factor IF3: two domains, five functions, one mechanism? , 2001, The EMBO journal.

[203]  J. Hedegaard,et al.  Clonal origin of aminoglycoside-resistant Citrobacter freundii isolates in a Danish county. , 2001, Journal of medical microbiology.

[204]  G. Culver,et al.  Meanderings of the mRNA through the ribosome. , 2001, Structure.

[205]  J. Hedegaard,et al.  Phylogeny of the genus Haemophilus as determined by comparison of partial infB sequences. , 2001, Microbiology.

[206]  Frank Schluenzen,et al.  High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium , 2001, Cell.

[207]  C. Gualerzi,et al.  Initiation factor IF 2 binds to the alpha-sarcin loop and helix 89 of Escherichia coli 23S ribosomal RNA. , 2001, RNA.

[208]  Thomas A. Steitz,et al.  RNA tertiary interactions in the large ribosomal subunit: The A-minor motif , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[209]  Harry F. Noller,et al.  The Path of Messenger RNA through the Ribosome , 2001, Cell.

[210]  W. Li,et al.  Structure and dynamics of translation initiation factor aIF‐1A from the archaeon Methanococcus jannaschii determined by NMR spectroscopy , 2001, Protein science : a publication of the Protein Society.

[211]  M. Marahiel,et al.  Complementation of Cold Shock Proteins by Translation Initiation Factor IF1 In Vivo , 2001, Journal of bacteriology.

[212]  S. Burley,et al.  Engaging the ribosome: universal IFs of translation. , 2001, Trends in biochemical sciences.

[213]  I. Vetter,et al.  The Guanine Nucleotide-Binding Switch in Three Dimensions , 2001, Science.

[214]  V. Ramakrishnan,et al.  Crystal structure of an initiation factor bound to the 30S ribosomal subunit. , 2001, Science.

[215]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[216]  R. Brimacombe,et al.  Evidence against an Interaction between the mRNA Downstream Box and 16S rRNA in Translation Initiation , 2001, Journal of bacteriology.

[217]  Gary D. Stormo,et al.  Do mRNAs act as direct sensors of small molecules to control their expression? , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[218]  Y. Cenatiempo,et al.  Initiation Factor 2 of Myxococcus xanthus, a Large Version of Prokaryotic Translation Initiation Factor 2 , 2001, Journal of bacteriology.

[219]  Ulrich Stelzl,et al.  Protein synthesis at atomic resolution: mechanistics of translation in the light of highly resolved structures for the ribosome. , 2002, Current protein & peptide science.

[220]  J. Hedegaard,et al.  Structural requirements of the mRNA for intracistronic translation initiation of the enterobacterial infB gene , 2002, Genes to cells : devoted to molecular & cellular mechanisms.

[221]  M. Springer,et al.  Translational feedback regulation of the gene for L35 in Escherichia coli requires binding of ribosomal protein L20 to two sites in its leader mRNA: a possible case of ribosomal RNA-messenger RNA molecular mimicry. , 2002, RNA.

[222]  A. Yonath The search and its outcome: high-resolution structures of ribosomal particles from mesophilic, thermophilic, and halophilic bacteria at various functional states. , 2002, Annual review of biophysics and biomolecular structure.

[223]  L. Spremulli,et al.  Identification of Mammalian Mitochondrial Translational Initiation Factor 3 and Examination of Its Role in Initiation Complex Formation with Natural mRNAs* , 2002, The Journal of Biological Chemistry.

[224]  V. Ramakrishnan,et al.  Selection of tRNA by the Ribosome Requires a Transition from an Open to a Closed Form , 2002, Cell.

[225]  F. Schluenzen,et al.  Initiation and inhibition of protein biosynthesis studies at high resolution. , 2002, Current protein & peptide science.

[226]  E. Adderson,et al.  Correlation of phylogenetic lineages of group B Streptococci, identified by analysis of restriction-digestion patterns of genomic DNA, with infB alleles and mobile genetic elements. , 2002, The Journal of infectious diseases.

[227]  M. Inouye,et al.  The Cold Box Stem-loop Proximal to the 5′-End of theEscherichia coli cspA Gene Stabilizes Its mRNA at Low Temperature* , 2002, The Journal of Biological Chemistry.

[228]  Jon R. Lorsch,et al.  The Path to Perdition Is Paved with Protons , 2002, Cell.

[229]  H. Noller,et al.  Translocation of tRNA during protein synthesis , 2002, FEBS letters.

[230]  Bacterial translation initiation-mechanism and regulation , 2002 .

[231]  M. Masters,et al.  Expression of the Escherichia coli pcnB gene is translationally limited using an inefficient start codon: a second chromosomal example of translation initiated at AUU , 2002, Molecular microbiology.

[232]  C. Gualerzi,et al.  Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control , 2002, Molecular microbiology.

[233]  Jill K Thompson,et al.  Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome. , 2002, Journal of molecular biology.

[234]  Ali Nahvi,et al.  Genetic control by a metabolite binding mRNA. , 2002, Chemistry & biology.

[235]  L. Isaksson,et al.  Cis control of gene expression in E.coli by ribosome queuing at an inefficient translational stop signal , 2002, The EMBO journal.

[236]  C. Gualerzi,et al.  Structure and function of bacterial initiation factors. , 2002, Current protein & peptide science.

[237]  V. Ramakrishnan,et al.  Ribosome Structure and the Mechanism of Translation , 2002, Cell.

[238]  M. Selmer,et al.  Post‐termination complex disassembly by ribosome recycling factor, a functional tRNA mimic , 2002, The EMBO journal.

[239]  V. Ramakrishnan,et al.  Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA. , 2002, Journal of molecular biology.

[241]  Stefano Marzi,et al.  Ribosomal localization of translation initiation factor IF2. , 2003, RNA.

[242]  G. Wagner,et al.  Mapping the binding interface between human eukaryotic initiation factors 1A and 5B: A new interaction between old partners , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[243]  P. Londei,et al.  Two different mechanisms for ribosome/mRNA interaction in archaeal translation initiation , 2003, Molecular microbiology.

[244]  T. Steitz,et al.  Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit. , 2003, RNA.

[245]  C. Gualerzi,et al.  Mapping the active sites of bacterial translation initiation factor IF3. , 2003, Journal of molecular biology.

[246]  William K. Ridgeway,et al.  X-ray crystal structures of the WT and a hyper-accurate ribosome from Escherichia coli , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[247]  Joachim Frank,et al.  Electron microscopy of functional ribosome complexes. , 2003, Biopolymers.

[248]  C. Gualerzi,et al.  Transcriptional and post-transcriptional control of cold-shock genes. , 2003, Journal of molecular biology.

[249]  David J. Worhunsky,et al.  Translational repression mechanisms in prokaryotes , 2003, Molecular microbiology.

[250]  B. S. Laursen,et al.  A Conserved Structural Motif at the N Terminus of Bacterial Translation Initiation Factor IF2* , 2003, The Journal of Biological Chemistry.

[251]  M. Ehrenberg,et al.  The roles of initiation factor 2 and guanosine triphosphate in initiation of protein synthesis , 2003, The EMBO journal.

[252]  J. Hedegaard,et al.  Characterization of mutations in the GTP-binding domain of IF2 resulting in cold-sensitive growth of Escherichia coli. , 2003, Journal of molecular biology.

[253]  Daniel N. Wilson,et al.  Ribosomal crystallography: peptide bond formation and its inhibition. , 2003, Biopolymers.

[254]  V. Ramakrishnan,et al.  Insights into the decoding mechanism from recent ribosome structures. , 2003, Trends in biochemical sciences.

[255]  Thomas A Steitz,et al.  RNA, the first macromolecular catalyst: the ribosome is a ribozyme. , 2003, Trends in biochemical sciences.

[256]  C. Condon RNA Processing and Degradation in Bacillus subtilis , 2003, Microbiology and Molecular Biology Reviews.

[257]  Daniel N. Wilson,et al.  The ribosome through the looking glass. , 2003, Angewandte Chemie.

[258]  Thomas Preiss,et al.  Starting the protein synthesis machine: eukaryotic translation initiation. , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[259]  H. P. Sørensen,et al.  A favorable solubility partner for the recombinant expression of streptavidin. , 2003, Protein expression and purification.

[260]  A. Hinnebusch,et al.  Domains of eIF1A that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo , 2003, The EMBO journal.

[261]  M. Gelfand,et al.  Riboswitches: the oldest mechanism for the regulation of gene expression? , 2004, Trends in genetics : TIG.

[262]  E. Nudler,et al.  The riboswitch control of bacterial metabolism. , 2004, Trends in biochemical sciences.

[263]  Y. Shimizu,et al.  Evidence for the Translation Initiation of Leaderless mRNAs by the Intact 70 S Ribosome without Its Dissociation into Subunits in Eubacteria* , 2004, Journal of Biological Chemistry.

[264]  C. Gualerzi,et al.  Preferential translation of cold-shock mRNAs during cold adaptation. , 2004, RNA.

[265]  L. Isaksson,et al.  Generation and characterization of functional mutants in the translation initiation factor IF1 of Escherichia coli. , 2004, European journal of biochemistry.

[266]  L. Spremulli,et al.  Expression and functional analysis of Euglena Gracilis chloroplast initiation factor 3 , 1996, Plant Molecular Biology.

[267]  B. S. Laursen,et al.  The N‐terminal domain (IF2N) of bacterial translation initiation factor IF2 is connected to the conserved C‐terminal domains by a flexible linker , 2004, Protein science : a publication of the Protein Society.

[268]  M. Springer,et al.  Physiological effects of translation initiation factor IF3 and ribosomal protein L20 limitation inEscherichia coli , 1996, Molecular and General Genetics MGG.