Recommender Systems in ECommerce

E-commerce is growing rapidly offering a vast number of products and services to the users. Facing with a wide range of options, users cannot decide which one would be the most suitable option. Recommender systems help users to find the most suitable item easier and faster. To do this, recommender systems apply machine learning algorithms to user’s data to build sophisticated models to predict the user’s behavior in the future. There are many recommender systems employed by companies to increase their profitability. Some examples include Amazon, Movielens, Youtube, Facebook, and Linkedin. This presentation details the implementation of a cluster based recommender system that can accurately recommend items to users.