Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending

Abstract Poly( l -lactide) (i.e. poly( l -lactic acid) (PLLA)) and poly( d -lactide) (i.e. poly( d -lactic acid) (PDLA)) and their equimolar enantiomeric blend (PLLA/PDLA) films were prepared and the effects of enantiomeric polymer blending on the thermal stability and degradation of the films were investigated isothermally and non-isothermally under nitrogen gas using thermogravimetry (TG). The enantiomeric polymer blending was found to successfully enhance the thermal stability of the PLLA/PDLA film compared with those of the pure PLLA and PDLA films. The activation energies for thermal degradation (Δ E td ) were evaluated at different weight loss values from TG data using the procedure recommended by MacCallum et al. The Δ E td values of the PLLA/PDLA, PLLA, and PDLA films were in the range of 205–297, 77–132, and 155–242 kJ mol −1 when they were evaluated at weight loss values of 25–90% and the Δ E td value of the PLLA/PDLA film was higher by 82–110 kJ mol −1 than the averaged Δ E td value of the PLLA and PDLA films. The mechanism for the enhanced thermal stability of the PLLA/PDLA film is discussed.

[1]  J. Swarbrick Drugs and the pharmaceutical sciences , 1975 .

[2]  Hideto Tsuji,et al.  Autocatalytic hydrolysis of amorphous-made polylactides: effects of l-lactide content, tacticity, and enantiomeric polymer blending , 2002 .

[3]  A. Södergård,et al.  Stabilization of poly(l-lactide) in the melt , 1994 .

[4]  M. Vert,et al.  Present and Future of PLA Polymers , 1995 .

[5]  I. C. Mcneill,et al.  Degradation studies of some polyesters and polycarbonates—1. Polylactide: General features of the degradation under programmed heating conditions , 1985 .

[6]  A. Södergård,et al.  Melt Stability Study of Various Types of Poly(l-lactide) , 1996 .

[7]  K. Reichert,et al.  Thermal degradation of poly-L-lactide-studies on kinetics, modelling and melt stabilisation , 1997 .

[8]  Antonios G. Mikos,et al.  Biodegradable polymer scaffolds to regenerate organs , 1995 .

[9]  Yoshito Ikada,et al.  Crystallization from the melt of poly(lactide)s with different optical purities and their blends , 1996 .

[10]  Young Ha Kim,et al.  Synthesis and degradation of end‐group‐functionalized polylactide , 2001 .

[11]  H. Tsuji In vitro hydrolysis of blends from enantiomeric poly(lactide)s Part 1. Well-stereo-complexed blend and non-blended films , 2000 .

[12]  D. Kaplan,et al.  Biopolymers from Renewable Resources , 1998 .

[13]  F. Kopinke,et al.  Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(β-hydroxybutyric acid) , 1997 .

[14]  S. Russo,et al.  Comprehensive polymer science: the synthesis, characterization, reactions & applic ations of polymers , 1989 .

[15]  Y. Doi,et al.  Thermal degradation of poly((R)-3-hydroxybutyrate), poly(e-caprolactone), and poly((S)-lactide) , 2002 .

[16]  M. Gupta,et al.  Thermal oxidative degradation of poly-lactic acid , 1982 .

[17]  D. Hill,et al.  Thermal stability of poly(lactic acid) before and after γ-radiolysis , 1999 .

[18]  Yoshito Ikada,et al.  Stereocomplex formation between enantiomeric poly(lactic acid)s. 6. Binary blends from copolymers , 1992 .

[19]  J. R. Maccallum,et al.  A comparative study of some methods of assessing kinetic parameters from thermogravimetric analysis , 1970 .

[20]  Katrin Mackenzie,et al.  Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid) , 1996 .

[21]  Y. Ikada,et al.  Crystal structure of stereocomplex of poly(L-lactide) and poly(D-lactide) , 1991 .

[22]  Yoshito Ikada,et al.  Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology of solution-cast films , 1999 .

[23]  Yoshito Ikada,et al.  Stereocomplex formation between enantiomeric poly(lactides) , 1987 .

[24]  A. Coombes,et al.  Resorbable synthetic polymers as replacements for bone graft. , 1994, Clinical materials.

[25]  Y. Ikada,et al.  Stereocomplex formation between enantiomeric poly(lactic acid)s. 7. Phase structure of the stereocomplex crystallized from a dilute acetonitrile solution as studied by high-resolution solid-state carbon-13 NMR spectroscopy , 1992 .

[26]  Y. Ikada,et al.  Biodegradable polyesters for medical and ecological applications , 2000 .

[27]  J. R. Maccallum,et al.  The kinetics of thermogravimetry , 1970 .

[28]  M. Gupta,et al.  Thermal oxidative degradation of poly-lactic acid , 1982 .

[29]  K. Diederichs,et al.  Mechanism of the Stereocomplex Formation between Enantiomeric Poly(lactide)s , 1996 .

[30]  I. C. Mcneill,et al.  Degradation studies of some polyesters and polycarbonates—2. Polylactide: Degradation under isothermal conditions, thermal degradation mechanism and photolysis of the polymer , 1985 .

[31]  T. Masuko,et al.  Crystallization behaviour of poly(l-lactide) , 1998 .

[32]  J M Powers,et al.  Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. , 1995, Journal of biomaterials science. Polymer edition.

[33]  J. R. Maccallum,et al.  The thermal decomposition of hydrocarbon copolymers—I. Head-to-head poly(α-methyl styrene) , 1972 .

[34]  K. Reichert,et al.  Thermal decomposition of biodegradable polyesters—III. Studies on the mechanisms of thermal degradation of oligo-l-lactide using SEC, LACCC and MALDI-TOF-MS , 1997 .

[35]  M. Day,et al.  Thermal Analysis of Some Environmentally Degradable Polymers , 1998 .

[36]  D. Pichora,et al.  An investigation of the synthesis and thermal stability of poly(dl-lactide) , 1992 .

[37]  Ann-Christine Albertsson,et al.  Degradable polymer microspheres for controlled drug delivery , 2002 .

[38]  Yoshito Ikada,et al.  Thermal characterization of polylactides , 1988 .

[39]  M. Marucci,et al.  Influence of residual monomers and metals on poly (L-lactide) thermal stability , 1997 .

[40]  W. W. Wright,et al.  Weight change caused by accumulation of volatiles during thermogravimetry of polymers , 1981 .