The structural, electrical and magnetoelectric properties of soft-chemically-synthesized SmFeO3 ceramics

The structural, electrical and magnetoelectric properties of SmFeO3 ceramic samples, synthesized using a soft-chemical method, were studied. A structural analysis of the material was carried out by the Rietveld refinement of room temperature x-ray diffraction data. The temperature dependence of the dielectric peaks was analyzed by fitting them with two Gaussian peaks corresponding to two phase transitions—one being electric, and the other being magnetic in nature. The depression angle of the semicircles in a Nyquist plot representing the grain and grain boundary contributions in the sample was estimated. The grain boundary effect, appearing at temperatures above 75 °C, is explained using the Maxwell–Wagner mechanism. The impedance study reveals a semi-conducting grain with an insulating grain boundary, leading to the formation of surface and internal barrier layer capacitors and resulting in a very high dielectric constant. The effect of dc conductivity on the loss tangent at low frequencies and high temperature has been analyzed. The frequency dependence of ac conductivity in the two different regions can be explained on the basis of correlated barrier hopping and quantum mechanical tunneling models. The material is found to exhibit canted antiferromagnetism and improper ferroelectric characteristics. The value of the magnetoelectric voltage-coupling coefficient (α) of a SmFeO3 ceramic is found to be 2.2 mV cm−1 Oe−1.

[1]  Dipti,et al.  Enhancement in magnetoelectric coupling in PZT based composites , 2015 .

[2]  Liguang Wang,et al.  High-temperature colossal dielectric response in RFeO3 (R=La, Pr and Sm) ceramics , 2015 .

[3]  W. Ni,et al.  Dielectric properties of ErFeO3 ceramics over a broad temperature range , 2014 .

[4]  K. Asokan,et al.  Structural, optical and dielectric properties of Ni substituted NdFeO3 , 2014 .

[5]  Yurong Yang,et al.  Creating multiferroics with large tunable electrical polarization from paraelectric rare-earth orthoferrites , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  R. Zuo,et al.  Preparation and multiferroic properties of 2-2 type CoFe2O4/Pb(Zr,Ti)O3 composite films with different structures , 2014 .

[7]  Naoto Nagaosa,et al.  Multiferroics of spin origin , 2014, Reports on progress in physics. Physical Society.

[8]  M. A. Rahman,et al.  Structural and electrical properties of (x)Mn0.45Ni0.05Zn0.50Fe2O4 + (1 − x)BaZr0.52Ti0.48O3 multiferroic materials , 2014 .

[9]  J. Ghosh,et al.  Dielectric relaxation and ac conductivity behaviour of polyvinyl alcohol–HgSe quantum dot hybrid films , 2014 .

[10]  R. Choudhary,et al.  Structural and Electrical Properties of Mechanothermally Synthesized NiFe2O4 Nanoceramics , 2014, Journal of Electronic Materials.

[11]  C. Deng,et al.  Dielectric, magnetic and magnetoelectric properties of Ni0.5Zn0.5Fe2O4+Pb(Zr0.48Ti0.52)O3 composite ceramics , 2014 .

[12]  C. Prakash,et al.  Comparative study of magnetoelectric composite system Ba0.95Sr0.05TiO3–Ni0.8Co0.2Fe2O4 with ferrite prepared by different methods , 2014 .

[13]  A. Bhalla,et al.  Investigation of the conduction processes in PZT‐based multiferroics: Analysis from Jonscher's formalism , 2014 .

[14]  M. Antonova,et al.  Structural, microstructural and impedance spectroscopy study of functional ferroelectric ceramic materials based on barium titanate , 2013 .

[15]  Sanjay Kumar,et al.  Electrical properties of Ba2YbNbO6: an impedance spectroscopy study , 2013 .

[16]  W. Ni,et al.  Colossal dielectric behavior in TbFeO3 ceramics , 2013 .

[17]  D. Sinclair,et al.  Non-stoichiometry in “CaCu3Ti4O12” (CCTO) ceramics , 2013 .

[18]  Shengtao Li,et al.  Enhanced electric breakdown field of CaCu3Ti4O12 ceramics: tuning of grain boundary by a secondary phase , 2013 .

[19]  H. Wu,et al.  Significant enhancements of dielectric and magnetic properties in Bi(Fe1−xMgx)O3−x/2 induced by oxygen vacancies , 2013 .

[20]  B. Yangui,et al.  Impedance and electric modulus study of amorphous TiTaO thin films: highlight of the interphase effect , 2013 .

[21]  B. Kang,et al.  Crystal growth and characterization of the rare earth orthoferrite PrFeO3 , 2013 .

[22]  Y. Meng,et al.  Structure and colossal dielectric permittivity of Ca2TiCrO6 ceramics , 2013 .

[23]  C. Mitra,et al.  The extrinsic origin of the magnetodielectric effect in the double perovskite La2NiMnO6 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  R. Xiong,et al.  Dielectric and Electrical Transport Properties of the Fe3+-doped CaCu3Ti4O12 , 2012 .

[25]  A. Venimadhav,et al.  Spin glass behaviour and extrinsic origin of magnetodielectric effect in non-multiferroic La2NiMnO6 nanoparticles , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  J. Goodenough,et al.  Magnetic coupling between Sm3+ and the canted spin in an antiferromagnetic SmFeO3 single crystal , 2012 .

[27]  H. M. Jang,et al.  Temperature-induced Magnetization Reversal and Ultra-fast Magnetic Switch at Low Field in SmFeO3 , 2012 .

[28]  G. Pietsch,et al.  Dynamics of dielectric barrier discharges in different arrangements , 2012 .

[29]  D. S. Babu,et al.  Colossal dielectric constant in PrFeO3 semiconductor ceramics , 2012 .

[30]  P. Manimuthu,et al.  Evidence of ferroelectricity in SrFeO3−δ , 2012 .

[31]  J. W. Chen,et al.  Abnormal high dielectric constant in SmFeO3 semiconductor ceramics , 2011 .

[32]  H. M. Jang,et al.  Spin-canting-induced improper ferroelectricity and spontaneous magnetization reversal in SmFeO3. , 2011, Physical review letters.

[33]  C. Nan,et al.  Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films , 2011, Advanced materials.

[34]  E. Eremin,et al.  Dielectric properties of a mixed-valence Pb3Mn7O15 manganese oxide , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  P. N. Lisboa-Filho,et al.  Structural, electronic structure and magnetic studies of SmFe1-xNixO3 (x <= 0.5) , 2010 .

[36]  M. Hassan,et al.  Investigation of conduction and relaxation phenomena in LaFe0.9Ni0.1O3 by impedance spectroscopy , 2010 .

[37]  Yoshinori Tokura,et al.  Multiferroics with Spiral Spin Orders , 2010, Advanced materials.

[38]  Y. Yoshida,et al.  Mechanism of ac conduction in nanostructured manganese zinc mixed ferrites , 2009 .

[39]  Y. Tokura,et al.  Composite domain walls in a multiferroic perovskite ferrite. , 2009, Nature materials.

[40]  James F. Scott,et al.  Physics and Applications of Bismuth Ferrite , 2009 .

[41]  O. P. Thakur,et al.  Ferroelectric relaxor behaviour and impedance spectroscopy of Bi2O3-doped barium zirconium titanate ceramics , 2009 .

[42]  M. Mostovoy,et al.  Magnetic order and ferroelectricity in RMnO3 multiferroic manganites: coupling between R- and Mn-spins , 2008 .

[43]  Y. Tokura,et al.  Magnetic-field-induced ferroelectric state in DyFeO3. , 2008, Physical review letters.

[44]  J. Wesselinowa,et al.  Theoretical study of static and dynamic properties of orthorhombic multiferroic substances , 2008 .

[45]  D. Bhattacharya,et al.  Frequency dependent conductivity of cadmium vanadate glassy semiconductor , 2008 .

[46]  K. Varma,et al.  Extreme values of relative permittivity and dielectric relaxation in Sr2SbMnO6 ceramics , 2007 .

[47]  R. Groessinger,et al.  The lock-in technique for studying magnetoelectric effect , 2007 .

[48]  B. Jeyadevan,et al.  Influence of thermal annealing on the dielectric properties and electrical relaxation behaviour in nanostructured CoFe2O4 ferrite , 2007 .

[49]  B. Chaudhuri,et al.  Maxwell–Wagner polarization mechanism in potassium and titanium doped nickel oxide showing giant dielectric permittivity , 2007 .

[50]  H. Zeyada,et al.  Electrical conduction mechanisms and dielectric properties of thermally evaporated N-(p-dimethylaminobenzylidene)-p-nitroaniline thin films , 2006 .

[51]  C. Prakash,et al.  Structural properties and impedance spectroscopy of excimer laser ablated Zr substituted BaTiO3 thin films , 2006 .

[52]  M. F. Kotkata,et al.  Electrical conduction and dielectric relaxation in semiconductor SeSm0.005 , 2006 .

[53]  A. P. Ramirez,et al.  Magnetoelectric phase diagrams of orthorhombic R MnO 3 ( R = Gd , Tb, and Dy) , 2005 .

[54]  Guoguang Liu,et al.  Preparation, characterization and photocatalytic properties of REFeO3 (RE = Sm, Eu, Gd) , 2005 .

[55]  New Jersey,et al.  Spin structure and magnetic frustration in multiferroic RMn2O5 (R=Tb,Ho,Dy) , 2005, cond-mat/0501382.

[56]  F. Morrison,et al.  CaCu3Ti4O12: One-step internal barrier layer capacitor , 2002 .

[57]  A. Srinivas,et al.  An experimental setup for dynamic measurement of magnetoelectric effect , 1998 .

[58]  D. Chakravorty,et al.  Classical hopping in sol - gel cobalt silicate glass , 1996 .

[59]  S. R. Elliott,et al.  A.c. conduction in amorphous chalcogenide and pnictide semiconductors , 1987 .

[60]  G. Pike ac Conductivity of Scandium Oxide and a New Hopping Model for Conductivity , 1972 .

[61]  Theodore H. Geballe,et al.  Low-Frequency Conductivity Due to Hopping Processes in Silicon , 1961 .