Regularity of 3D axisymmetric Navier-Stokes equations
暂无分享,去创建一个
Hui Chen | Ting Zhang | Daoyuan Fang | Ting Zhang | D. Fang | Hui Chen
[1] Jian-Guo Liu,et al. Energy and helicity preserving schemes for hydro- and magnetohydro-dynamics flows with symmetry , 2004 .
[2] Jian-Guo Liu,et al. Convergence Analysis of the Energy and Helicity Preserving Scheme for Axisymmetric Flows , 2006, SIAM J. Numer. Anal..
[3] Rej Kreml,et al. A REGULARITY CRITERION FOR THE ANGULAR VELOCITY COMPONENT IN AXISYMMETRIC NAVIER-STOKES EQUATIONS , 2007 .
[4] Jean Leray,et al. Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'Hydrodynamique. , 1933 .
[5] Gerd Baumann,et al. Navier–Stokes Equations on R3 × [0, T] , 2016 .
[6] Changxing Miao,et al. On the Global Well-posedness for the Boussinesq System with Horizontal Dissipation , 2012, 1203.1372.
[7] J. García Azorero,et al. Hardy Inequalities and Some Critical Elliptic and Parabolic Problems , 1998 .
[8] Dongho Chae,et al. Digital Object Identifier (DOI) 10.1007/s002090100317 , 2002 .
[9] P. Saramito. Navier–Stokes Equation , 2016 .
[10] J. Málek,et al. On Axially Symmetric Flows in R 3 , 2013 .
[11] D. Fang,et al. The regularity criterion for 3D Navier-Stokes Equations , 2012, 1205.1255.
[12] Shuji Takahashi. On interior regularity criteria for weak solutions of the navier-stokes equations , 1990 .
[13] J. Serrin. The initial value problem for the Navier-Stokes equations , 1963 .
[14] Edriss S. Titi,et al. Regularity Criteria for the Three-dimensional Navier-Stokes Equations , 2008 .
[15] L. E. Fraenkel,et al. NAVIER-STOKES EQUATIONS (Chicago Lectures in Mathematics) , 1990 .
[16] M. Badiale,et al. A Sobolev-Hardy Inequality with¶Applications to a Nonlinear Elliptic Equation¶arising in Astrophysics , 2002 .
[17] Qionglei Chen,et al. Regularity criterion of axisymmetric weak solutions to the 3D Navier–Stokes equations , 2007 .
[18] Yong Zhou,et al. On the regularity of the solutions of the Navier–Stokes equations via one velocity component , 2010 .
[19] S. Kaniel,et al. The initial value problem for the navier-stokes equations , 1966 .
[20] R. Jackson. Inequalities , 2007, Algebra for Parents.
[21] E. Hopf,et al. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .
[22] R. Kohn,et al. Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .
[23] H. Yau,et al. Lower Bounds on the Blow-Up Rate of the Axisymmetric Navier–Stokes Equations II , 2007, 0709.4230.
[24] Milan Pokorný,et al. AXISYMMETRIC FLOW OF NAVIER-STOKES FLUID IN THE WHOLE SPACE WITH NON-ZERO ANGULAR VELOCITY COMPONENT , 2001 .
[25] B. Jones,et al. The initial value problem for the Navier-Stokes equations with data in Lp , 1972 .
[26] Jian-Guo Liu,et al. Characterization and Regularity for Axisymmetric Solenoidal Vector Fields with Application to Navier-Stokes Equation , 2009, SIAM J. Math. Anal..
[27] D. Fang,et al. Some new regularity criteria for the 3D Navier-Stokes Equations , 2012, 1212.2335.
[28] M. R. Ukhovskii,et al. Axially symmetric flows of ideal and viscous fluids filling the whole space , 1968 .
[29] J. Serrin. On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .
[30] V. Sverák,et al. Backward Uniqueness for Parabolic Equations , 2003 .
[31] Yoshikazu Giga,et al. Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system , 1986 .
[32] Robert M. Strain,et al. Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations II , 2007, math/0701796.
[33] Milan Pokorný,et al. On Axially Symmetric Flows in $mathbb R^3$ , 1999 .
[34] R. Temam. Navier-Stokes Equations , 1977 .
[35] Nikolai Nadirashvili,et al. Liouville theorems for the Navier–Stokes equations and applications , 2007, 0709.3599.
[36] G. Prodi. Un teorema di unicità per le equazioni di Navier-Stokes , 1959 .
[37] Namkwon Kim. Remarks for the axisymmetric Navier–Stokes equations , 2003 .
[38] D. Fang,et al. Several almost critical regularity conditions based on one component of the solutions for 3D N-S Equations , 2013, 1312.7378.
[39] Thomas Y. Hou,et al. Dynamic stability of the three‐dimensional axisymmetric Navier‐Stokes equations with swirl , 2008 .
[40] Fanghua Lin,et al. A new proof of the Caffarelli‐Kohn‐Nirenberg theorem , 1998 .
[41] Adam Kubica. Remarks on regularity criteria for axially symmetric weak solutions to the Navier–Stokes equations , 2012 .
[42] Michael Struwe,et al. On partial regularity results for the navier‐stokes equations , 1988 .
[43] Ping Zhang,et al. Global Axisymmetric Solutions to Three-Dimensional Navier–Stokes System , 2014 .
[44] Ping Zhang,et al. Global smooth axisymmetric solutions of 3-D inhomogeneous incompressible Navier–Stokes system , 2014, 1409.2953.
[45] Milan Pokorný,et al. Some New Regularity Criteria for the Navier-Stokes Equations Containing Gradient of the Velocity , 2004 .
[46] Zhen Lei,et al. A Liouville Theorem for the Axially-symmetric Navier-Stokes Equations , 2010, 1011.5066.