Regularity of 3D axisymmetric Navier-Stokes equations

In this paper, we study the three-dimensional axisymmetric Navier-Stokes system with nonzero swirl. By establishing a new key inequality for the pair $(\frac{\omega^{r}}{r},\frac{\omega^{\theta}}{r})$, we get several Prodi-Serrin type regularity criteria based on the angular velocity, $u^\theta$. Moreover, we obtain the global well-posedness result if the initial angular velocity $u_{0}^{\theta}$ is appropriate small in the critical space $L^{3}(\R^{3})$. Furthermore, we also get several Prodi-Serrin type regularity criteria based on one component of the solutions, say $\omega^3$ or $u^3$.

[1]  Jian-Guo Liu,et al.  Energy and helicity preserving schemes for hydro- and magnetohydro-dynamics flows with symmetry , 2004 .

[2]  Jian-Guo Liu,et al.  Convergence Analysis of the Energy and Helicity Preserving Scheme for Axisymmetric Flows , 2006, SIAM J. Numer. Anal..

[3]  Rej Kreml,et al.  A REGULARITY CRITERION FOR THE ANGULAR VELOCITY COMPONENT IN AXISYMMETRIC NAVIER-STOKES EQUATIONS , 2007 .

[4]  Jean Leray,et al.  Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'Hydrodynamique. , 1933 .

[5]  Gerd Baumann,et al.  Navier–Stokes Equations on R3 × [0, T] , 2016 .

[6]  Changxing Miao,et al.  On the Global Well-posedness for the Boussinesq System with Horizontal Dissipation , 2012, 1203.1372.

[7]  J. García Azorero,et al.  Hardy Inequalities and Some Critical Elliptic and Parabolic Problems , 1998 .

[8]  Dongho Chae,et al.  Digital Object Identifier (DOI) 10.1007/s002090100317 , 2002 .

[9]  P. Saramito Navier–Stokes Equation , 2016 .

[10]  J. Málek,et al.  On Axially Symmetric Flows in R 3 , 2013 .

[11]  D. Fang,et al.  The regularity criterion for 3D Navier-Stokes Equations , 2012, 1205.1255.

[12]  Shuji Takahashi On interior regularity criteria for weak solutions of the navier-stokes equations , 1990 .

[13]  J. Serrin The initial value problem for the Navier-Stokes equations , 1963 .

[14]  Edriss S. Titi,et al.  Regularity Criteria for the Three-dimensional Navier-Stokes Equations , 2008 .

[15]  L. E. Fraenkel,et al.  NAVIER-STOKES EQUATIONS (Chicago Lectures in Mathematics) , 1990 .

[16]  M. Badiale,et al.  A Sobolev-Hardy Inequality with¶Applications to a Nonlinear Elliptic Equation¶arising in Astrophysics , 2002 .

[17]  Qionglei Chen,et al.  Regularity criterion of axisymmetric weak solutions to the 3D Navier–Stokes equations , 2007 .

[18]  Yong Zhou,et al.  On the regularity of the solutions of the Navier–Stokes equations via one velocity component , 2010 .

[19]  S. Kaniel,et al.  The initial value problem for the navier-stokes equations , 1966 .

[20]  R. Jackson Inequalities , 2007, Algebra for Parents.

[21]  E. Hopf,et al.  Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .

[22]  R. Kohn,et al.  Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .

[23]  H. Yau,et al.  Lower Bounds on the Blow-Up Rate of the Axisymmetric Navier–Stokes Equations II , 2007, 0709.4230.

[24]  Milan Pokorný,et al.  AXISYMMETRIC FLOW OF NAVIER-STOKES FLUID IN THE WHOLE SPACE WITH NON-ZERO ANGULAR VELOCITY COMPONENT , 2001 .

[25]  B. Jones,et al.  The initial value problem for the Navier-Stokes equations with data in Lp , 1972 .

[26]  Jian-Guo Liu,et al.  Characterization and Regularity for Axisymmetric Solenoidal Vector Fields with Application to Navier-Stokes Equation , 2009, SIAM J. Math. Anal..

[27]  D. Fang,et al.  Some new regularity criteria for the 3D Navier-Stokes Equations , 2012, 1212.2335.

[28]  M. R. Ukhovskii,et al.  Axially symmetric flows of ideal and viscous fluids filling the whole space , 1968 .

[29]  J. Serrin On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .

[30]  V. Sverák,et al.  Backward Uniqueness for Parabolic Equations , 2003 .

[31]  Yoshikazu Giga,et al.  Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system , 1986 .

[32]  Robert M. Strain,et al.  Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations II , 2007, math/0701796.

[33]  Milan Pokorný,et al.  On Axially Symmetric Flows in $mathbb R^3$ , 1999 .

[34]  R. Temam Navier-Stokes Equations , 1977 .

[35]  Nikolai Nadirashvili,et al.  Liouville theorems for the Navier–Stokes equations and applications , 2007, 0709.3599.

[36]  G. Prodi Un teorema di unicità per le equazioni di Navier-Stokes , 1959 .

[37]  Namkwon Kim Remarks for the axisymmetric Navier–Stokes equations , 2003 .

[38]  D. Fang,et al.  Several almost critical regularity conditions based on one component of the solutions for 3D N-S Equations , 2013, 1312.7378.

[39]  Thomas Y. Hou,et al.  Dynamic stability of the three‐dimensional axisymmetric Navier‐Stokes equations with swirl , 2008 .

[40]  Fanghua Lin,et al.  A new proof of the Caffarelli‐Kohn‐Nirenberg theorem , 1998 .

[41]  Adam Kubica Remarks on regularity criteria for axially symmetric weak solutions to the Navier–Stokes equations , 2012 .

[42]  Michael Struwe,et al.  On partial regularity results for the navier‐stokes equations , 1988 .

[43]  Ping Zhang,et al.  Global Axisymmetric Solutions to Three-Dimensional Navier–Stokes System , 2014 .

[44]  Ping Zhang,et al.  Global smooth axisymmetric solutions of 3-D inhomogeneous incompressible Navier–Stokes system , 2014, 1409.2953.

[45]  Milan Pokorný,et al.  Some New Regularity Criteria for the Navier-Stokes Equations Containing Gradient of the Velocity , 2004 .

[46]  Zhen Lei,et al.  A Liouville Theorem for the Axially-symmetric Navier-Stokes Equations , 2010, 1011.5066.