Phase separation suppression in InxGa1-xN on a Si substrate using an indium modulation technique

[1]  Zhigang Zang,et al.  Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes. , 2016, Optics letters.

[2]  R. S. Kumar,et al.  Influence of p-GaN shape on the light emission characteristics of InGaN nanodisk embedded p-i-n GaN nanorods , 2015 .

[3]  P. Ma,et al.  The role played by strain on phase separation in InGaN quantum wells , 2014 .

[4]  N. Shigekawa,et al.  Phase separation of thick (∼1 µm) InxGa1−xN (x ∼ 0.3) grown on AlN/Si(111): Simultaneous emergence of metallic In–Ga and GaN-rich InGaN , 2014 .

[5]  T. Araki,et al.  Growth of thick InGaN films with entire alloy composition using droplet elimination by radical-beam irradiation , 2013 .

[6]  Z. Wasilewski,et al.  Nonequivalent atomic step edges—Role of gallium and nitrogen atoms in the growth of InGaN layers , 2013 .

[7]  J. Greenlee,et al.  Observation and control of the surface kinetics of InGaN for the elimination of phase separation , 2012 .

[8]  L. Geelhaar,et al.  Nucleation and growth of Au-assisted GaAs nanowires on GaAs(1 1 1)B and Si(1 1 1) in comparison , 2011 .

[9]  A. Hangleiter,et al.  Growth and characterization of InGaN by RF-MBE , 2011 .

[10]  M. Kaneko,et al.  Investigation of InN mole fraction fluctuation in InGaN films grown by RF-MBE , 2011 .

[11]  Seong-Ju Park,et al.  Green Gap Spectral Range Light-Emitting Diodes with Self-Assembled InGaN Quantum Dots Formed by Enhanced Phase Separation , 2011 .

[12]  Junqiao Wu,et al.  When group-III nitrides go infrared: New properties and perspectives , 2009 .

[13]  Hongxing Jiang,et al.  Single phase InxGa1−xN(0.25≤x≤0.63) alloys synthesized by metal organic chemical vapor deposition , 2008 .

[14]  Ian T. Ferguson,et al.  Design and characterization of GaN∕InGaN solar cells , 2007 .

[15]  T. Ikari,et al.  Nitrogen supply rate dependence of InGaN growth properties, by RF-MBE , 2007 .

[16]  T. Ikari,et al.  Growth of In-rich InGaN films on sapphire via GaN layer by RF-MBE , 2007 .

[17]  T. Taguchi,et al.  Diffusion of In atoms in InGaN ultra‐thin films during post‐growth thermal annealing by high‐resolution Rutherford backscattering spectrometry , 2005 .

[18]  S. Chang,et al.  Characterization of InGaN/GaN multi-quantum-well blue-light-emitting diodes grown by metal organic chemical vapor deposition , 2004 .

[19]  James H. Edgar,et al.  Substrates for gallium nitride epitaxy , 2002 .

[20]  F. Ponce,et al.  A comparison of Rutherford backscattering spectroscopy and X-ray diffraction to determine the composition of thick InGaN epilayers , 2001 .

[21]  Michael Heuken,et al.  Metalorganic Chemical Vapor Phase Epitaxy of Crack-Free GaN on Si (111) Exceeding 1 µm in Thickness , 2000 .

[22]  Chih-Chung Yang,et al.  Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells , 2000 .

[23]  Chen,et al.  Spontaneous formation of indium-rich nanostructures on InGaN(0001) surfaces , 2000, Physical review letters.

[24]  Nikhil Sharma,et al.  Chemical mapping and formation of V-defects in InGaN multiple quantum wells , 2000 .

[25]  D. Greve,et al.  Surface structures and growth kinetics of InGaN(0001) grown by molecular beam epitaxy , 2000 .

[26]  R. F. Karlicek,et al.  Phase separation in InGaN/GaN multiple quantum wells and its relation to brightness of blue and green LEDs , 1998 .

[27]  A. T. Kalghatgi,et al.  Electrical transport studies of MBE grown InGaN/Si isotype heterojunctions , 2013 .