Accessing copper-tin-sulfide nanostructures from diorganotin(IV) and copper(I) 2-pyrazinyl thiolates

[1]  C. Zuidema,et al.  Sensor , 2020, Patty's Industrial Hygiene.

[2]  Jun Xu,et al.  A top-down synthesis of wurtzite Cu2SnS3 nanocrystals for efficient photoelectrochemical performance , 2018 .

[3]  C. Betty,et al.  Synthesis, characterization and photovoltaic properties of phase pure Cu2SnSe3 nanostructures using molecular precursors , 2018, Journal of Materials Science: Materials in Electronics.

[4]  C. Lokhande,et al.  Novel antibacterial application of photovoltaic Cu2SnS3 (CTS) nanoparticles , 2017 .

[5]  J. Ramanujam,et al.  Copper indium gallium selenide based solar cells – a review , 2017 .

[6]  S. B. Krupanidhi,et al.  Heat-up synthesis of Cu2SnS3 quantum dots for near infrared photodetection , 2017 .

[7]  K. Ryan,et al.  Compound Copper Chalcogenide Nanocrystals. , 2017, Chemical reviews.

[8]  P. Prasad,et al.  Kuramite Cu3SnS4 and Mohite Cu2SnS3 Nanoplatelet Synthesis Using Covellite CuS Templates with Sn(II) and Sn(IV) Sources , 2017 .

[9]  Zi-kui Liu,et al.  A hybrid functional study of native point defects in Cu2SnS3: implications for reducing carrier recombination. , 2017, Physical chemistry chemical physics : PCCP.

[10]  M. Green,et al.  The current status and future prospects of kesterite solar cells: a brief review , 2016 .

[11]  In-Young Kim,et al.  Colloidal Wurtzite Cu2SnS3 (CTS) Nanocrystals and Their Applications in Solar Cells , 2016 .

[12]  P. Patil,et al.  A Simple Aqueous Precursor Solution Processing of Earth-Abundant Cu2SnS3 Absorbers for Thin-Film Solar Cells. , 2016, ACS applied materials & interfaces.

[13]  Liang Wu,et al.  Polytypic Nanocrystals of Cu-Based Ternary Chalcogenides: Colloidal Synthesis and Photoelectrochemical Properties. , 2016, Journal of the American Chemical Society.

[14]  B. Vishwanadh,et al.  Diorganotin(IV) 4,6-dimethyl-2-pyrimidyl selenolates: synthesis, structures and their utility as molecular precursors for the preparation of SnSe2 nano-sheets and thin films , 2016 .

[15]  M. Kumar,et al.  Deposition and characterization of Cu2SnS3 thin films by co-evaporation for photovoltaic application , 2015 .

[16]  B. Vishwanadh,et al.  Diorganotin(IV) 2-pyridyl and 2-pyrimidyl thiolates: synthesis, structures and their utility as molecular precursors for the preparation of tin sulfide nanosheets , 2015 .

[17]  Rakesh Ganguly,et al.  Hemilabile silver(I) complexes containing pyridyl chalcogenolate (S, Se) ligands and their utility as molecular precursors for silver chalcogenides , 2015 .

[18]  M. Swihart,et al.  Composition-Dependent Crystal Phase, Optical Properties, and Self-Assembly of Cu–Sn–S Colloidal Nanocrystals , 2015 .

[19]  Ho Jin,et al.  Simultaneous phase and size control in the synthesis of Cu2SnS3 and Cu2ZnSnS4 nanocrystals , 2014 .

[20]  Jinqing Wang,et al.  Cu2ZnSnS4 alloys synthesized from Cu2SnS3@ZnS nanoparticles via a facile hydrothermal approach , 2014 .

[21]  A. Walsh,et al.  Design of I2–II–IV–VI4 Semiconductors through Element Substitution: The Thermodynamic Stability Limit and Chemical Trend , 2014 .

[22]  R. Sharma,et al.  Synthesis, structures and DFT calculations of 2-(4,6-dimethyl pyrimidyl)selenolate complexes of Cu(I), Ag(I) and Au(I) and their conversion into metal selenide nanocrystals. , 2014, Dalton transactions.

[23]  R. Sharma,et al.  Indium(III) (3-methyl-2-pyridyl)selenolate: Synthesis, structure and its utility as a single source precursor for the preparation of In2Se3 nanocrystals and a dual source precursor with [Cu{SeC5H3(Me-3)N}]4 for the preparation of CuInSe2 , 2013 .

[24]  V. Jain,et al.  Pyridyl and pyrimidyl chalcogen (Se and Te) compounds: A family of multi utility molecules , 2013 .

[25]  C. Betty,et al.  Diorganotin(IV) 2-pyridyl selenolates: synthesis, structures and their utility as molecular precursors for the preparation of tin selenide nanocrystals and thin films. , 2012, Dalton transactions.

[26]  A. Pérez‐Rodríguez,et al.  Raman analysis of monoclinic Cu2SnS3 thin films , 2012 .

[27]  Luigi Carbone,et al.  Microwave-assisted synthesis of colloidal inorganic nanocrystals. , 2011, Angewandte Chemie.

[28]  R. Sharma,et al.  Copper(I) 2-pyridyl selenolates and tellurolates: synthesis, structures and their utility as molecular precursors for the preparation of copper chalcogenide nanocrystals and thin films. , 2011, Dalton transactions.

[29]  A. Walsh,et al.  Structural diversity and electronic properties of Cu2SnX3 (X = S, Se): A first-principles investigation , 2011 .

[30]  Yuhan Lin,et al.  Alloyed (ZnS)(x)(Cu2SnS3)(1-x) and (CuInS2)(x)(Cu2SnS3)(1-x) nanocrystals with arbitrary composition and broad tunable band gaps. , 2011, Chemical communications.

[31]  Hanning Xiao,et al.  Preparation and characterization of CuS hollow spheres , 2009 .

[32]  Ramphal Sharma,et al.  Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature , 2008 .

[33]  Junhong Zhang,et al.  Syntheses, crystal structures and coordination modes of tri- and di-organotin derivatives with 2-mercapto-4-methylpyrimidine , 2005 .

[34]  D. Hughes,et al.  Copper complexes of 1,3-bis(2-pyridyl)-1-thiapropane (bpt) andpyridine-2(1H)-thione. Crystal structure of[{Cu(µ-O2CMe)2(bpt)}2] and metal-promoted cleavage of bpt , 1997 .

[35]  H. Preut,et al.  Diphenylbis(2-pyridinethiolato)tin(IV) , 1993 .

[36]  V. Jain,et al.  Steric effects on the formation of isolable products in the reactions of dibutyltin oxides with carboxylic acids , 1992 .

[37]  E. Castellano,et al.  Comparative structural study of dimethyl(pyridine-2-thiolato)thallium(III) and dimethylbis(pyridine-2-thiolato)tin(IV) , 1990 .

[38]  D. Kessissoglou,et al.  Mononuclear and binuclear Cu(I) complexes with metal-sulfur ligation , 1989 .

[39]  A. Lyčka,et al.  13C and 119Sn NMR spectra of di-n-butyltin(IV) compounds , 1986 .

[40]  Klaus Jurkschat,et al.  Synthese und spektroskopische Untersuchungen von Di‐t‐Butylzinn(IV)‐dicarboxylaten , 1986 .

[41]  G. Domazetis,et al.  Bis (2-thio-5-nitropyridine)-S-di-n-butylstannane (IV): Crystal structure and spectroscopic studies , 1979 .

[42]  G. Cheeseman 47. The synthesis and tautomerism of some 2-substituted pyrazines , 1960 .