Measuring the exciton diffusion length of C60 in organic planar heterojunction solar cells
暂无分享,去创建一个
Dashan Qin | Dayan Ban | Rudra Sankar Dhar | Peng Gu | S. G. Razavipour | D. Qin | Peng Gu | R. Dhar | D. Ban
[1] Barry P Rand,et al. 4.2% efficient organic photovoltaic cells with low series resistances , 2004 .
[2] Stephen R. Forrest,et al. Mixed donor-acceptor molecular heterojunctions for photovoltaic applications. I. Material properties , 2005 .
[3] Jeremy J. Baumberg,et al. Polariton lasing by exciton-electron scattering in semiconductor microcavities , 2002 .
[4] Robert L. Whetten,et al. Photophysical properties of C60 , 1991 .
[5] Thomas Strobel,et al. Role of the Charge Transfer State in Organic Donor–Acceptor Solar Cells , 2010, Advanced materials.
[6] Yang Yang,et al. Efficient Organic Heterojunction Photovoltaic Cells Based on Triplet Materials , 2005 .
[7] J. Hummelen,et al. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.
[8] Method of determining the exciton diffusion length using optical interference effect in Schottky diode , 2009 .
[9] R. J. Bell,et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.
[10] L. Pfeiffer,et al. Electron-polariton scattering, beneficial and detrimental effects , 2004 .
[11] S. Forrest,et al. Mixed donor-acceptor molecular heterojunctions for photovoltaic applications. II. Device performance , 2005 .
[12] Stephen R. Forrest,et al. Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells , 2001 .
[13] C. S. Menon,et al. Electrical conductivity studies and optical absorption studies in copper phthalocyanine thin films , 1995 .
[14] Stephen R. Forrest,et al. Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions , 2004 .
[15] A. M. Rao,et al. Ellipsometric determination of the optical constants of C60 (Buckminsterfullerene) films , 1991 .
[16] Stephen R. Forrest,et al. Small molecular weight organic thin-film photodetectors and solar cells , 2003 .
[17] C. Tang. Two‐layer organic photovoltaic cell , 1986 .
[18] R. D. Gould,et al. Dependence of the mobility and trap concentration in evaporated copper phthalocyanine thin films on background pressure and evaporation rate , 1986 .
[19] Ching Wan Tang,et al. Organic Schottky barrier photovoltaic cells based on MoOx/C60 , 2010 .
[20] M. Dresselhaus,et al. Role of molecular oxygen and other impurities in the electrical transport and dielectric properties of C{sub 60} films , 1997 .
[21] D. L. Dexter. A Theory of Sensitized Luminescence in Solids , 1953 .
[22] Stephen R. Forrest,et al. Transient analysis of organic electrophosphorescence: I. Transient analysis of triplet energy transfer , 2000 .
[23] N. Yokoyama,et al. DIELECTRIC-BASE TRANSISTORS WITH DOPED CHANNEL , 1997 .
[24] Xudong Chen,et al. Nondestructive evaluation of nanoscale structures: inverse scattering approach , 2010 .
[25] L. S. Roman,et al. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films , 1999 .
[26] M. Baldo,et al. Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green's functions. , 2007, Optics express.
[27] Alan Sussman,et al. Space‐Charge‐Limited Currents in Copper Phthalocyanine Thin Films , 1967 .